Nez Perce Tribe, Wetland Program Rue Hewett Hoover

Nez Perce Nimiipuu

Elizabeth Wilson at Musselshill Meadows Agnes Moses at Mossilshell Meadows

Nimiipuu Homeland

Nez Perce Land Ownership -- 2019

Nez Perce Tribe needed a tool to assess and prioritize wetlands.

- What will work and what will not?
- Went to trainings for two different assessment tools, also reviewed other assessment tools that were being used in other states.
- How to relate a value for wetlands to the public and the Tribal NPTEC committee.
- How do we show the cultural importance of wetlands?
- Chose the Wetland Ecosystem Services Protocol tool (WESP) - by Dr. Paul Adamus

What Is WESP?

- **Standardized protocol** (functional assessment tool) for rapidly assessing wetlands
- An Excel-based logics model that provides scores (0-10) for 17 things that a wetland can do (functions) and their likely benefits (values or benefits).
 - to assess **relative importance** of a particular wetland.
- **Data forms** contain questions you must answer for the spreadsheet to operate. Answers based on two components:
 - Offsite (desktop) evaluation information
 - Provides landscape level context for subject wetland
 - Review of secondary data sources (spatial and non-spatial data)
 - Facilitated greatly by GIS
 - Onsite (field) observations
 - Survey of wetland and adjacent buffer
 - Soils, hydrology ,vegetation, disturbance, and land use.

Why Perform Functional Assessment(FA)?

- Functional Assessment (FA) provides a science-based and landscape-level view of a wetland's various ecological services
- All wetlands are important, but not all are equal FA enables distinction between wetlands on a functional basis, based on both the effectiveness and value of each function
- FA results can be used a decision-making tool
 - For regulators, in wetlands regulatory approvals process
 - For proponents, in project planning and design
- Tool for determining compensation requirements for wetland alterations
- Tool for evaluating wetland restoration success

WESP addresses 17 specific functions, not all of which are applicable in each individual wetland:

- Water storage and delay(WS)
- Thermoregulation(SFT)
- Sediment retention and stabilization(SR)
- Phosphorous retention(PR)
- Nitrate removal and retention(NR)
- Carbon sequestration(CS)
- Organic nutrient export(OE)
- Aquatic invertebrate habitat(INV)
- Fish habitat(FA)

- Amphibian and reptile habitat(AM)
- Water bird habitat(WB)
- Songbird, raptor and mammal habitat(SBM)
- Pollinator habitat(POL)
- Native plant diversity(PD)
- Cultural significance(CRI)*
- Wetland sensitivity(Sens)
- Wetland stress(STR)

*In addition to adapting and calibrating this model to our ecosystems (Reservation and Ceded Lands), we have added a cultural importance function that has never been included before.

WESP – Grouped Functions The specific functions are distilled down to 6 'grouped functions':

- Hydrologic group
- Water quality group
- Fish support group
- Aquatic support group
- Terrestrial support group
- Cultural importance group

Sample Output

SPECIFIC FUNCTIONS	wetia	Wetland C-01	
	Relative Effectiveness of the Function	Relative Values of the Function	
Water Storage & Delay (WS)	0.33	3.83	
Sediment Retention & Stabilization (SR)	8.33	4.69	
Phosphorus Retention (PR)	6.79	4.74	
Nitrate Removal & Retention (NR)	6.33	5.29	
Thermoregulation (T)	0.00	0.00	
Carbon Sequestration (CS)	5.82		
Organic Matter Export (OE)	0.00		
Aquatic Invertebrate Habitat (INV)	7.00		
Anadromous Fish Habitat (FA)	0.00	2.17	
Non-anadromous Fish Habitat (FR)	1.67	1.08	
Amphibian & Reptile Habitat (AM)	6.82	4.67	
Waterbird Feeding Habitat (WBF)	2.17	5.00	
Waterbird Nesting Habitat (WBN)		3.50	
Songbird, Raptor, & Mammal Habitat (SBM)	6.39	4.67	
Pollinator Habitat (POL)	7.58	0.00	
Native Plant Diversity (PD)	5.48	7.00	

GROUPED FUNCTIONS	Group Scores (functions)	Group Scores (values)
Hydrologic Function (WS)	0.33	3.83
Water Quality Group (WQ)	8.33	5.29
Carbon Sequestration (CS)	5.82	
Fish Support Group (FISH)	1.67	2.17
Aquatic Support Group (AQ)		5.00
Terrestrial Support Group (TERR)	7.58	7.00
Public Use & Recognition (PU)		0.56
Dravicianing Convisos (DC)		0.00

Different Wetlands are More Important for Different Things

Different Wetlands are More Important for Different Things

Different Wetlands are More Important for Different Things

WESP - Interpretation

Effectiveness and Values of functions should be considered independently of one another.

Value of Function **Potential Action Effectiveness of Function** Avoid / Preserve HIGH HIGH **Restore or Enhance** LOW HIGH Maintain as is HIGH LOW LOW **Develop**? LOW

Why standardize functional assessment?

Few people can predict all wetland functions.

- Few can instantly recall all indicators of functions.
- Different people mentally assign different weights to indicators.
- Reduces arbitrariness 🛑 increased public confidence.
- "Paper trail" -- legal reasons.

Why use WESP over other assessment methods?

- Field component is quite rapid and efficiently executed
- Repeatability (Consistency) of scores has been found to be within ± 0.6 point or less on a 0 to 10 scoring scale
- Numeric scores facilitate:
 - Inter-wetland comparison
 - Ecological ranking of wetlands
 - Change over time analysis (i.e., pre and post alteration, or restoration/enhancement)
- Can analyze results in terms of individual functions (e.g. nitrate removal), or grouped functions (e.g. terrestrial support)

Calibrate WESP

- Identify statewide spatial layers needed to define population from which calibration wetlands will be selected.
- With GIS do wetland "joins" and conduct queries of additional layers to characterize all known wetlands, i.e., create database.
- For field visits, from the database select ~100 wetlands covering all hydrologic regions, ecoregions, NWI classes, inlets/outlets, altitudes, human disturbance gradients, etc. With few exceptions, limit to public lands within 300 ft. of a road.
- Modify ORWAP questions as needed to better address Nez Perce Reservation wetlands. Finalize data forms for field use.
- train & test them (3-5 days).
- Plan field work logistics; visit & assess 100 wetlands as needed for model calibration (1 fulltime crew x 10 weeks?).
- Simultaneously, GIS person conducts multiple queries. Upload key layers to Idaho Open Data Portal or similar, for interactive mapping.
- Peer review. Then modify ORWAP models and cell formulas to better address Nez Perce Reservation conditions adding cultural importance. Document assumptions using Idaho and Reservation literature.
- Enter all data in spreadsheet (computes scores).

Funded by EPA Region 10 Wetland Program Development Grant Final products:

• a regionally-calibrated wetland functional assessment tool

Potential anticipated uses for tool:

- identifying functions, benefits, & values of individual wetlands
- prioritizing wetlands restoration and protection
- evaluating restoration results
- monitoring the long-term effects of wetland restoration
- predicting and evaluating impacts from climate change
- incorporating cultural value into evaluation of wetlands

Lessons Learned

- Cultural sensitivity is very important and hard to do.
- Allow more time to calibrate tool. Or get more people to work with you on project.
- Needed more money and staff.
- Hard to do when you are the only one working for the program.
- Weather unpredictable
- GIS skills very important
- Very important to collaborate with tool developer (Dr. Paul Adamus)

Nez Perce Tribe's Musselshell Meadows

Upcoming projects for the Nez Perce Tribe Wetland Program:

Collecting baseline wetland data for Musselshell Meadows, a historical gathering spot for the Nez Perce Tribe camas.

- Developing a wetland native and cultural plant identification guide for restoration.
- Developing a camas monitoring method for culturally important Musselshell Meadow.
- Conducting baseline monitoring of camas on Musselshell Meadows.

• Thank you!!

This project was funded by an EPA Region 10 Wetland Development Program Grant. Rue Hewett Hoover; rueh@nezperce.org