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To conserve and restore the natural and
cultural resources of the Chesapeake Bay
watershed for the enjoyment, education and
inspiration of this and future generations.
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S e e T The Challenge

1. Accurate wetland maps needed for
compliance and modeling

Existing wetland data has gaps
Wetlands are hard to map
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The Opportunity

Remote
Sensing

Artificial
Intelligence

Cloud
Computing




Goal

Make water quality modeling and
regulation more effective with accurate,
up-to-date wetland data.

Objectives

- Automated and repeatable

- Precise (e.g., high resolution)
- Use consistent, publicly available data
- Create data in 12 test counties




Remote Sensing Data: NAIP

Variables: Red, Green, Blue, Near
Infrared

Resolution: 0.6 - 1 m
Frequency: ~ 2 — 3 years
Time: 2013 - 2022




Remote Sensing Data: Elevation

Variables: Elevation (m)
Resolution: 1 m
Frequency: ~2 -3 years
Time: 2016 - 2022




inel-1

Data: Sent

ing

Remote Sens

band radar returns

: VV, VH C-

Variables

10 m

IoN

Resolut

~ every 5 days

2014 - present

Frequency

ime

T




Input data — SSURGO soil characteristics

Variables: Wetness depth, Drainage
class, Flood frequency, Hydric class

Resolution: 10 m

Frequency: Static
Time: Static




Model Training: Data

25,000 sample points
> 2016 NWI Polygons

600 x 600 pixel ‘chips’

® Inside wetlands

Outside wetlands



Model Training: Workflow
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Model Training: Performance
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Location (UTM 18S):
356006, 4342231
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Al Model & NWI Wetland Detection Accuracy
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Precise, Current Wetland Maps

Al Wetland: 80 - 90%
NWI: 41%

Recall

Precision

Al Wetland: 93%
NWI: 72%




Chesapeake Conservancy Al Wetlands Web App

https://experience.arcgis.com/experience/4c220be8365b47d19f3effbdc98f005b




Chesapeake Conservancy Al Wetlands Web App
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Restoration Oppo
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Chesapeake  Conservation il

Conservancy Innovation Center Chesapeake Bay Program

Science. Restoration. Partnership.

Thank You!

Michael Evans, PhD
mevans@chesapeakeconservancy.org
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Deep Learning (Al)

Neural network — learn non-linearities, conditionalities, &
Interactions
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Deep Learning: Convolution

learn the shape and context of objects in images




B % e ‘Mn«

- e
~—— —







MARVEL




IJ-Net
—s— Hierarchical
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f‘ Status Workers Tasks System Profile Graph Groups Info More...

Bytes stored: 31.92 GiB Task Stream
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Remote Sensing Data

o e =

Data about Earth’s surface
Collected by satellite or plane

Can have multiple ‘bands’

Many types of data (radar, lidar, etc.)




Hyper-resolution hydrography

Partnership between CC,
UMBC, and EPA’s
Chesapeake Bay Program

Maps headwaters and
lateral positioning of
stream channels more
precisely than NHD
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https://cicgis.org/portal/apps/experiencebuilder/experience/?id=8b64a2aa6a8544b88e3dd599ca132210
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Next Steps

1. Produce public web maps

2. Create data for entire CBW
3. Tool development

4. Evaluate application to NWI
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Model Training: Active Learning
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Not Wetland = 0.83

Emergent Wetland = 0.12
Forested Wetland = 0.05

Not Wetland = 0.33
Emergent Wetland = 0.41
Forested Wetland = 0.26




I\/Iodel Outputs

Basic model
prediction
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" NWI label

Full model
prediction







Model Outputs
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Cloud Computing




Cloud Computing
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Model Training: Image Augmentation

Rotate 180°
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