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AI-Powered Wetland Mapping 

Dr. Michael Evans
Deputy Director & Lead Data Scientist



To conserve and restore the natural and 
cultural resources of the Chesapeake Bay 

watershed for the enjoyment, education and 
inspiration of this and future generations.
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The Challenge

1. Accurate wetland maps needed for 
compliance and modeling

2. Existing wetland data has gaps

3. Wetlands are hard to map
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The Opportunity

Remote 
Sensing

Artificial 
Intelligence

Cloud 
Computing
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Goal

Make water quality modeling and 
regulation more effective with accurate, 
up-to-date wetland data.

Objectives
- Automated and repeatable

- Precise (e.g., high resolution)

- Use consistent, publicly available data

- Create data in 12 test counties



Remote Sensing Data: NAIP

Variables: Red, Green, Blue, Near 
Infrared

Resolution: 0.6 - 1 m

Frequency: ~ 2 – 3 years

Time: 2013 - 2022



Remote Sensing Data: Elevation

Variables: Elevation (m)

Resolution: 1 m

Frequency: ~2 -3 years

Time: 2016 - 2022



Remote Sensing Data: Sentinel-1

Variables: VV, VH C-band radar returns

Resolution: 10 m

Frequency: ~ every 5 days 

Time: 2014 - present



Input data – SSURGO soil characteristics
Variables: Wetness depth, Drainage 

class, Flood frequency, Hydric class

Resolution: 10 m

Frequency: Static

Time: Static



Inside wetlands

Outside wetlands

25,000 sample points

600 x 600 pixel ‘chips’

Model Training: Data

> 2016 NWI Polygons



Training data

Remote 
sensing data

Process
Sample

TrainPredict

Model Training: Workflow
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Metric Model

Basic Full

IoU 83.3% 87.3%

Accuracy 91.6% 94.0%

Precision 90.5% 96.5%

Recall 91.3% 90.2%
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Precise, Current Wetland Maps

Emergent

Wooded

Wetland Probability

0.0 0.5
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Location 
(UTM 18S): 
356006, 
4342231 

Emergent

Wooded

Wetland Probability

Location (UTM 18S): 
356006, 4342231 

0.0 0.5

BGE

NWI

Delineated Wetlands
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Precise, Current Wetland Maps

Recall

AI Wetland: 80 - 90%
NWI: 41%

Precision

AI Wetland: 93%
NWI: 72%



https://experience.arcgis.com/experience/4c220be8365b47d19f3effbdc98f005b



https://experience.arcgis.com/experience/4c220be8365b47d19f3effbdc98f005b
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Restoration Opportunities



Thank You!
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Michael Evans, PhD
mevans@chesapeakeconservancy.org



Deep Learning (AI)
Neural network – learn non-linearities, conditionalities, & 
interactions

Not Wetland

Forested Wetland

R

G

B

N

UV

Emergent Wetland



Deep Learning: Convolution

learn the shape and context of objects in images
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Greenbury Point, MD. Sep, 2022
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Location 
(UTM 18S): 
356006, 
4342231 

Emergent

Farmed

Wooded

Wetland Probability
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Remote Sensing Data

1. Data about Earth’s surface 

2. Collected by satellite or plane

3. Can have multiple ‘bands’

4. Many types of data (radar, lidar, etc.)



Hyper-resolution hydrography

Partnership between CC, 
UMBC, and EPA’s 
Chesapeake Bay Program

Maps headwaters and 
lateral positioning of 
stream channels more 
precisely than NHD



https://cicgis.org/portal/apps/experiencebuilder/experience/?id=8b64a2aa6a8544b88e3dd599ca132210

https://cicgis.org/portal/apps/experiencebuilder/experience/?id=8b64a2aa6a8544b88e3dd599ca132210
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https://cicgis.org/portal/apps/webappviewer/index.html?id=bdf7ca3e249a40fd9a9d83d6e16100ea
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Next Steps

1. Produce public web maps

2. Create data for entire CBW

3. Tool development

4. Evaluate application to NWI
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Model Training: Active Learning

Not Wetland = 0.83 

Forested Wetland = 0.05 

Emergent Wetland = 0.12 

Not Wetland = 0.33 

Forested Wetland = 0.26

Emergent Wetland = 0.41
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NWI label

Full model 
prediction

Basic model 
prediction

Model Outputs
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NWI label
Full model 
prediction

Model Outputs



NWI label
Full model 
prediction

Model Outputs





Cloud Computing



Cloud Computing



Model Training: Image Augmentation

Original Rotate 90° Rotate 270°Rotate 180°

Brightness -5%
Contrast -5% 

Brightness +5%
Contrast -5% 

Brightness -5%
Contrast +5% 

Brightness +5%
Contrast +5% 
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