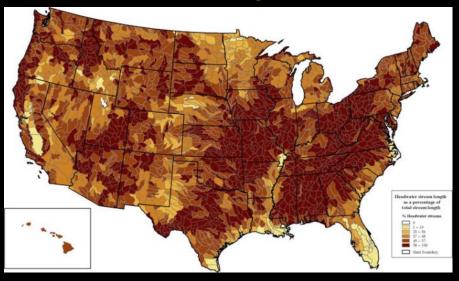
Streamflow Duration Assessment Method: Pacific Northwest



Tracie Nadeau, USEPA, Region 10 24 January 2013

Policy Context – Streams as Emerging Issue

- U.S. Supreme Court SWANNC (2001); Rapanos (2006) Affect CWA Jurisdiction
 - Continuous surface connection; relatively permanent flow
 - Significant nexus, alone or in combination
- USEPA/USACE Final Compensatory Mitigation Rule (2008; Section 404)
 - Watershed-based decision making
 - Unavoidable impacts to ALL jurisdictional aquatic resources must be mitigated

Headwater Stream Length

Intermittent and Ephemeral Stream Length

Nadeau & Rains (2007)

Program Implementation?

Diverse geographic distribution of stream type

Connectivity? Significant Nexus? Downstream Contributions? Watershed Context? Relatively Permanent?

Policies have different reverberations in different parts of the country, and within states

Today's SDAM Talk

Development

Validation Study

➢ Application

Purpose of SDAM

- A rapid field assessment tool to distinguish between ephemeral, intermittent and perennial streams.
- Provide a scientifically supported, rapid assessment framework to support best professional judgment in a consistent, robust, repeatable and defensible way.
- Allow more timely and predictable jurisdictional determinations.

Intended Use

- The method is designed to distinguish ephemeral streams from intermittent and perennial streams in a single site visit.
- It can be used across the range of stream ecosystems found in the Pacific Northwest.
- Use of SDAM is recommended, but not required.
- When the streamflow duration is already known, using the method would be unnecessary.

Development of the Method

- 2007 Adaptation of North Carolina Method framework for use in Oregon; including review, consultation and field testing
- 2008 External peer review, first field season validation study
- 2009 INTERIM METHOD published via joint Public Notice
- 2008-10 Validation study, Oregon phase (testing Interim Method)
 - REVISED (final) METHOD results from Oregon study
- 2010-11 Validation study, ID/WA phase (testing Interim and Revised Methods)
- 2011 Revised *(final)* Method for Oregon published
- 2013 Anticipated release Final Method for Pacific Northwest

Interim Method Indicators

Geomorphology (7)

Continuous Bed and Bank

In-channel Structure

Soil Texture or Stream Substrate Sorting

Erosional Features*

Depositional Features

Sinuosity

Headcuts and Grade Control*

Interim Method Indicators

Hydrology (6)

Groundwater (Wet Channel)

Hyporheic Saturation (Dry-Channel)

Springs and Seeps

Evenly Dispersed Leaf-Litter/Loose Debris*

Debris Piles or Wrack Lines*

Redoximorphic Features in Toe of Bank*

Interim Method Indicators

Biology (10)

Wetland Plants In/Near Streambed Fibrous Roots or Rooted Plants in Streambed (Upland Plants) Streamer Mosses and Algal Mats* Iron-oxidizing Bacteria, Fungus, Flocculent Macroinvertebrates Amphibians* Fish Lichen Line (Arid, Semi-Arid, Alpine)* Riparian Vegetation Corridor (Arid, Semi-Arid)

Single Indicators

Interim Method

Species that indicate streamflow is at least intermittent, based on requirements for sustained presence of water.

Project # / Name				Evaluator Attended	Orientatio	on 🗆 f	Field Training	
Add	Address						Date	
Wat	Waterway Name				Coordinates			N
Rea	ch Boundaries				downstream (ddd.mm.ss)	end Long.		W
Pre	cipitation w/in 48 hours (cm)	C	Channel Gra	dient (9	6)	Channe (m)	l Width	
		Channel"				Wet Chan	nel"	
_		o surface flo ast one pool			rface flow pre t spatially con			ontinuous irface flow
	Disturbed Site / Difficult Situati	ion (Describe i	n "Notes")	Abs	ent Wea	ik Mo	derate	Strong
	1. Continuous Bed and Banl	k			□ 1		2	3
	2. In-channel Structure / Org	ganized Seq	uences	0	1		2	3
<u>g</u>	3. Soil texture or stream sub	ostrate sortin	ig	0	1		2	3
Geomorphology		Check this I		0	0.5		1	1.5
lou		of the streambe of exposed bed		0	1		2	3
eou	6. Sinuosity			0	1		2	3
G	7. Headcuts And Grade Con	ntrols		0	0.5		1	1.5
			GEO	MORPH	HOLOGY SU	BTOTAL:		
	8. Groundwater (Wet) / Hype	orheic (Dry)		0	□ 1		2	3
>	9. Springs And Seeps (Note Locations)		0	□ 1		2	3	
log	10. Evenly Disbursed Leaf Litter / Loose Debris ▼			1.	5 🗌 1).5	0
łydrology	11. Debris Piles And Wrack	ebris Piles And Wrack Lines		0	0.5	1	1	1.5
Ť	12. Redoximorphic Features	s In Toe Of E	Bank	Ab	sent = 0	F	Present =	= 1.5
				HYDROLOGY SUBTOTAL:				
	13. Wetland Plants (Within 1/2	channel width) 🗌 FAC 0.	.5 🗌 F.	ACW 0.75	OBL 1.5	SAV	2 None
	14. Fibrous Roots / Rooted	Plants In Th	alweg 🔻	3	2		1	0
I 1	15. Streamer Mosses And Algal Mats			0	0.5		1	1.5
I 1	16. Iron Oxidizing Bacteria, Fungus, Flocculent			0	L 1		2	3
9gy	17. Macroinvertebrates			0	1		2	3
Biology	18. Amphibians (Within 1 channel width)			0	0.5		1	1.5
-	19. Fish			0	□ 1		2	3
	20. Lichen Line (Arid Regions	and Alpine An	eas Only)	0	0.5		1	1.5
	21. Riparian Corridor (Arid Re	egions Only)		0	□ 1		2	3
				В	IOLOGY SU	BTOTAL:	_	
	Fish			7	TOTAL S	SCORE:		
	Single Amphibians			Flo	w Duration (select on	ly one)	
Indi	Indicators: Acroinvertebrates Ep		Eph	emeral	Total S	core < 13		
Note	e: Scoring scale is reversed		Inter	mittent	t 🗌 Total S	core ≥ 13	or Singl	e Indicator
						core ≥ 25		

Oregon Streamflow Duration Field Assessment Form (Interim Version - March 2009)

Feedback from Training Sessions

Spring 2009 Interagency training sessions in Portland, La Grande, and Medford, Oregon

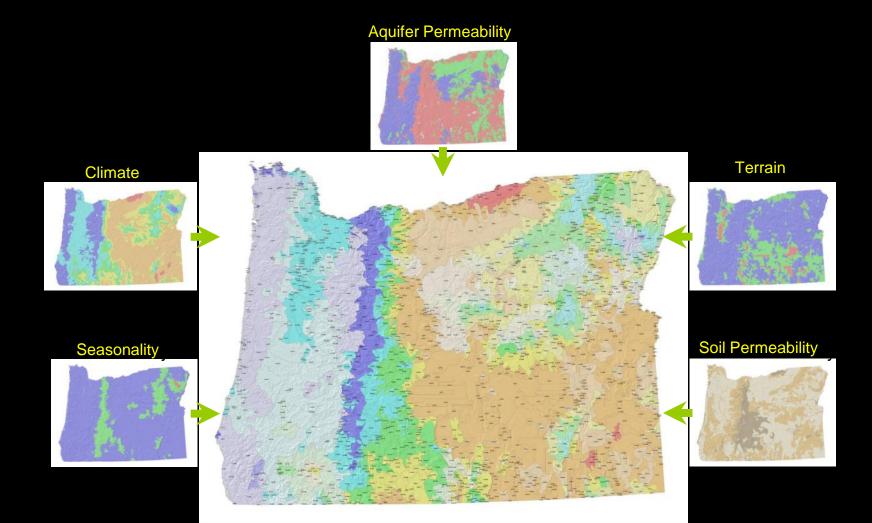
- Provides scientific framework to discuss stream issues
- Difficult to consistently assess subjective indicators
- Geomorphology indicators overweighted, seem to produce false positives
- Groundwater indicator is difficult to assess
- Macroinvertebrate identification requires training, and a field guide that is directly relevant to the macroinvertebrate indicator would be helpful

VALIDATION STUDY OBJECTIVES

Consistent, defensible, robust, repeatable method

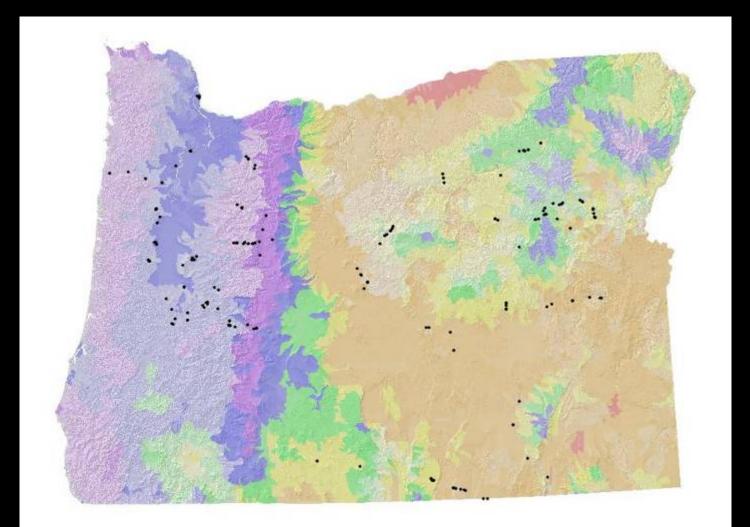
• Applicable across the Pacific Northwest

 Research to directly inform the program/policy arena on jurisdictional issues



Study Questions (Phase I: Oregon)

- What is the accuracy of the Interim Method?


- Equally applicable in different (wet/dry) seasons?
- Equally applicable in different hydrologic landscapes across the state?
- Can results be improved by developing an alternative method (statistical analysis of data)?

Hydrologic Landscape Regions

Wigington et al. (2012) ; Leibowitz et al. (2011)

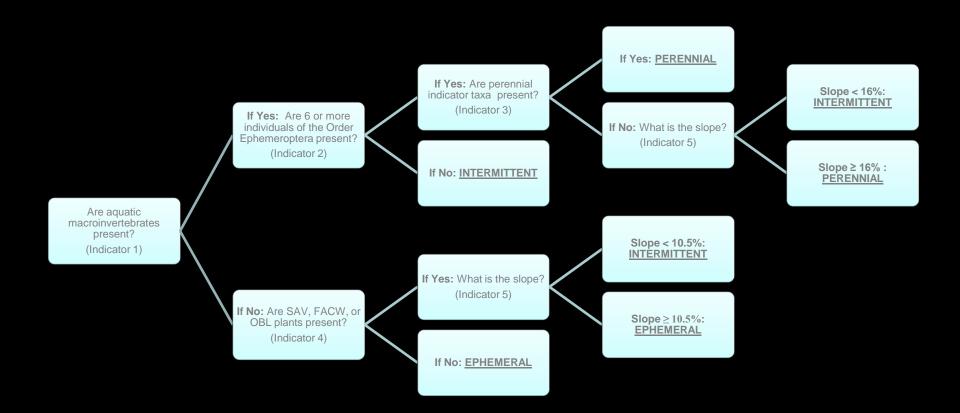
Oregon Validation Study Sites

Validation Study Phase I Oregon: Interim Method

- Sampled across a range of hydrologic settings (177 streams)
 - ~30 streams per E/I/P class arid east side
 - ~30 streams per class west side
- Deployed ER sensors in > 50% of streams
- Wet/Dry season sampling

Supplemental Data Collected for "problem" indicators

- Slope of reach
- % streambed bedrock
- Surface water hydrology
- Macroinvert and wetland plant ID
- Alternative sinuosity measurement


		INTERIM METHOD			
		Ephemeral	Intermittent	Perennial	
	Ephemeral	84	56	0	
ACTUAL	Intermittent	11	57	58	
	Perennial	0	10	80	

Correct:	222	62%
Incorrect:	135	38%
Total:	356	100%

Statistical Analyses

- 1. Indicators with strongest explanatory power for classifying hydrological permanence (RF)
 - Macroinvertebrate (presence & perennial) (I);
 Ephemeroptera (S); hydrophytic plants (I); slope (S); leaf litter accumulation (I)
- Developed a 'best fit' classification tree (model; 75% of data)
- 3. Tested model (25% data)
- 4. Basis of decision-tree (Revised Method)

Revised Method

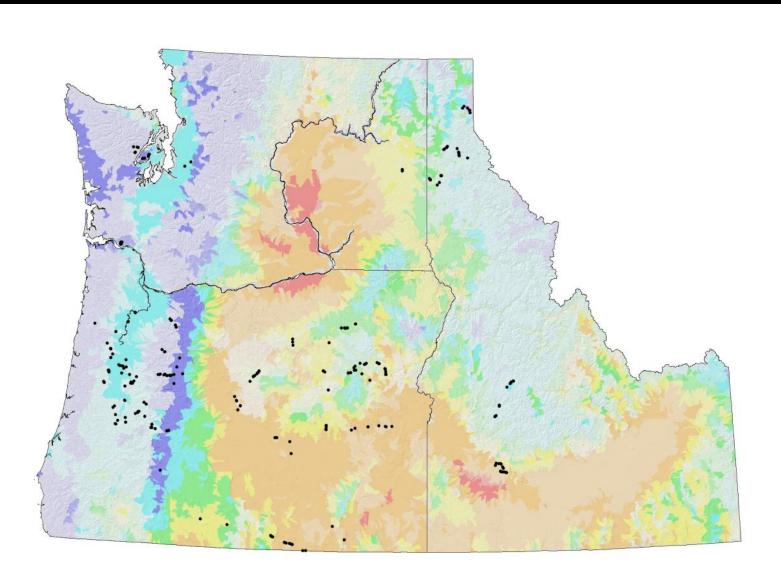
Single Indictors for "at least intermittent" maintained - Presence of fish or herpetological species' life history stages requiring sustained presence of water

		REVISED METHOD			
		Ephemeral	Intermittent	Perennial	
	Ephemeral	128	12	0	
ACTUAL	Intermittent	6	113	7	
	Perennial	0	24	66	

Correct:	307	86%	
Incorrect:	49	14%	I/P combined: 94.9%
Total:	356	100%	

Conclusions Phase I

- Interim Method has some subjective indicators that are difficult to assess
- Interim Method overweighted geomorphic indicators—led to false conclusions because flow magnitude, rather than flow duration, was scored
- Revised Method based on measurable, rather than subjective indicators



Study Questions (Phase II: Washington, Idaho)

Evaluate regional applicability of methods developed in Oregon

- What is the performance accuracy of the Interim and Revised Methods in Washington and Idaho in similar and dissimilar hydrologic landscapes?
- Does statistical analyses of 3 state data provide a model that outperforms model (Revised Method) developed from Oregon data alone?

Washington, Idaho Validation Study Sites

Validation Study Phase II: Washington, Idaho

- Sampled across a range of hydrologic settings at ~90 study sites in three clusters
- Interim, Supplemental, Revised, and Single Indicator data collected
- Wet/Dry season sampling

ACCURACY (%)		Combined Data Set – 3 states		
		Interim	Revised*	
CLASS	Ephemeral	89.3	92.5	
URATION	Intermittent	48.7	76.1	
STREAMFLOW DURATION CLASS	Perennial	59.1	84.1	
STREA	Average	65.7	84.2	

Analyses of 3-state data did not provide model (method) that significantly outperforms method (Revised) developed using Oregon data alone

	SINGLE INDICATOR		
ACCURACY (%)	Herpetological life history stages	Fish	
ALL DATA	Presence I/P streams 48.5	42.8	
	Presence Accuracy 97.1	100	

While the *absence* of fish or identified herpetological species is not significant, their *presence* is; thus they are maintained as single indicators denoting "at least intermittent" status.

ACCURACY (%)			
		Interim	Revised
ALL		62.3	83.9
<		(81.6)	(93.8)
	ID_c	63.3	80.0
		(78.3)	(88.3)
	ID_n	62.5	73.2
		(87.5)	(89.3)
REGION	OR_e	59.7	91.5
REG		(81.3)	(97.2)
	OR_w	64.4	81.1
		(81.1)	(92.8)
	WA_w	62.5	83.9
	WA_W	(82.1)	(96.4)

Accuracy parsed by study area regions; upper number is overall, lower number is I/P accuracy.

Conclusions Phase II

- Effective model (method) from empirical design
- Method developed using BPJ (Interim) establishes testable hypothesis; study points to importance of field testing
- In PNW, biological indicators are good indicators of streamflow duration
- Provides defensible, repeatable method applicable across PNW (and wet/dry seasons*)

Companion Macroinvertebrate Field Guide, Studies

- Xerces report (EPA funded) identified family-level differences in macroinvertebrate communities sufficient to allow use as indicators to discriminate between P, I, E stream types (OR 2008; WA, ID 2011).
- Resulted in P, I, E indicator taxa list, and Field Guide, for SDAM for the PNW.
- Provides consistent collection methodology.

SDAM Application

Beyond informing jurisdictional determinations, informs:

Restoration prioritization
 Stream buffer requirements
 Water quality assessment method application

Acknowledgments

Jim Wigington, Scott Leibowitz, Randy Comeleo, Ken Fritz, Joe Ebersole, Rob Coulombe, Jess Jordan, John Olson, Peter Ryan, Linda Storm, Tina Tong, Mike Turaski, Yvonne Vallette, Jim Zokan

Further information

nadeau.tracie@epa.gov

http://yosemite.epa.gov/R10/ecocomm.nsf/wetlands/sdam