Natural Floodplain Functions Alliance Webinar Series Presents:

> An Introduction to the Marsh Adaptation Strategy Tool (MAST)

Presented by: Dr. Samuel Merrill, GEI Consultants, Inc.

Hosted by the Association of State Wetland Managers Supported by the McKnight Foundation

Photo credit: NOAA

Welcome! If you have any technical difficulties during the webinar you can send us

a question in the webinar question box or call Laura at (207) 892-3399.

Agenda

- 1. Welcome and Introductions
 - 5 minutes
- An Introduction to the Marsh Adaptation Strategy Tool (MAST) - 30 minutes
- 3. Question and Answer
 - 15 minutes
- 4. Wrap-up 5 minutes

Today's Presenter

Dr. Samuel Merrill Senior Practice Leader

GEI Consultants, Inc.

NFFA Webinar Series Moderator

Jeanne Christie Executive Director

Association of State Wetland Managers

Webinar Schedule & Recordings

Association of State Wetland Managers - Protecting the Nation's Wetlands.

ASWM Upcoming Webinars

- Stream/Wet Meadow Restoration September 8, 2015
- The Florida Wetlands Integrity Dataset: Part 2 September 16, 2015
- Solar Project Siting and Wetland Permitting September 29, 2015

For a complete list of ASWM webinars, click here.

For information about this picture and to see past pictures of the week click here.

assessment methods to obtain science-based answers to wetland management problems. While it provides an overview of many common approaches to wetland monitoring, the focus is primarily on *why* these methods are selected for a given purpose. This report encourages the thoughtful identification of the most appropriate and efficient methods in light of available financial and staff resources.

Association of State Wetland Managers - Protecting the Nation's Wetlands.

ASWM Upcoming Webinars

- Stream/Wet Meadow Restoration September 8, 2015
- The Florida Wetlands Integrity Dataset: Part 2 September 16, 2015
- Solar Project Siting and Wetland Permitting September 29, 2015

For a complete list of ASWM webinars, click here.

Home	ASWM	I Am	Wetlands	Science	Wetland Programs	Watersheds	Law	News	Blog

Search ASWM

Main Menu

- Join/Renew
- Contact Us
- News
 Webinars

Webinar

Schedule &

Recordings

- ASWM Publications
- Wetlands One-Stop Mapping
- Donate
- · Volunteer

Member's Login

Remember Me

Login

Forgot your username? Forgot your pessword?

ASWM Menu

- · About ASWM
- ASWM Projects
- Do Business With Us
- Volunteer
- Contact ASVM
- Publications
- ASWM Members
 Login Required:
- ASWM Board (Login Reg.)
- Newsletters
- Insider's Edition
- Insider's Edition

ASWM Webinars/Conference Schedule

The Association of State Wetland Managers holds webinars on various topics, most of which relate to a specific project and work group. In addition, ASWM holds webinars as part of its members' webinar series on topics of interest to members. Please click on the webinar group name below for more details about individual webinars. In all cases, if you have any questions about registering for a webinar, please contact Laura at laura@aswm.org. If you are a member, and you missed a webinar that was part of the members' webinar series, please contact us. We will post the recordings of the webinars going ahead.

A presentation given during a webmar

If you haven't used Go To Webinar before or you just need a refresher, please view our guide prior to the webinar here.

Special Topics Webinars

Members' Wetland Webinar Series

Future Past: Members Only Past: Nonmembers

Natural Floodplain Functions Alliance (NFFA)

Future Past

Wetland Mapping Consortium (WMC)

Future Past

Improving Wetland Restoration Success Project

Future Past

Latest NFFA Webinar Posted

From Sept. 8, 2015

A Joint Webinar with the ASWM Wetland Restoration Work Group: "Stream/Wetland Restoration"

Presenters:

- Will Harmon, Stream Mechanics
- Matt Daniels, River Designs Group

Part 1: Introduction: Marla Stelk, Policy Analyst, ASWM and Jeanne Christie, ASWM

Part 2: Presenter: Will Harman, PG, Stream Mechanics

Part 3: Presenter: Will Harman, PG. Stream Mechanics

Part 4: Presenter: Matt Daniels, P.E., River Design Group

Part 5: Presenter: Matt Daniels, P.E., River Design Group

Part 6: Presenter: Matt Daniels, P.E., River Design Group Moderator: Jeanne Christie, ASWM -Recommendations

Part 7: Moderator: Jeanne Christie, ASWM Questions/Answers

Part 8: Moderator: Jeanne Christie, ASWM Questions/Answers

Part 9: Moderator: Jeanne Christie ASWM Questions/Answers

Future Schedule

- No Conference Call in December
 - Conference call

The Calendar for 2016 is being developed and will be announced via email.

Currently conference calls and webinars are usually held on alternating months on the second Tuesday of the month at 3:00 p.m. eastern, 2:00 central, 1:00 mountain, and 12:00 pacific.

Interested in Receiving CEUs?

Who can get CEUs?

- You must be a participant during the live webinar presentation.
- We are able to track webinar participation by registrants using our GoToWebinar software.
- Documentation will state that you were a participant for X hours of a specific ASWM webinar.

Receiving Documentation

If you need CEUs for your participation in today's webinar, you <u>must request</u> <i>documentation from ASWM.

Please note that we will send the documentation to you *for you to forward* to the accrediting organization.

Please contact Laura Burchill laura@aswm.org (207) 892-3399

Provide:

- Your full name (as registered)
- Webinar date and Title

Changing over to Presenter's Computer...

Samuel B. Merrill, PhD November 3, 2015

Strategically Guiding Marsh Migration

An Introduction to the Marsh Adaptation Strategy Tool (MAST) and values-allocation process.

Dilemma: Not being proactive enough about marsh migration.

Topics for Today

- 1. The MAST software and how it works
- 2. Mechanics of the values allocation process
- 3. Case examples from Maine and Massachusetts
- 4. Limitations of the model, other uses
- 5. Questions and discussion

Technical Practice Areas

- Compliance
- Permitting
- Due Diligence
- Characterization
- Remediation
- Risk Assessment
- Restoration
- Asbestos
- Demolition
- Brownfields
- In-Water & Uplands

Geotechnical

Coastal Engineering & Planning

- Foundations
- Excavation Support
- Construction
- Tunneling
- Dams
- Embankments
- Levees
- Failure Analysis
- Geotechnical
 Testing

- Conveyance
- Flood Control
- Water Management
- Water Supply and Storage
 - Water Resources
 Support
 - Hydropower

- Ecotoxicology
- Monitoring
- Water Quality
- Aquatic Ecosystems
- Environmental Impact
- Laboratory
 Services
- Sensory Services
- Air Quality

Clients Across a Broad Spectrum

- Industry
- Utilities
- Transportation
- Attorneys and professional service firms
- Developers and architects
- Government agencies (federal, state & local)
- Noprofits and Universities

35,000+ Projects Nationwide

U.S. Capitol Visitor Center Nicholson Construction Co., Washington, D.C.

All-American Canal Lining Project Imperial County, California

UTC/Formerly Essex Wire, Newmarket, NH Brownfields Site Assessment and Remediation

Soil Removal, Slurry Wall, GW Treatment, Landfills & Ponds - Nevada

Elements of MAST (Marsh Adaptation Strategy Tool)

- Built on the COAST software architecture.
- Goal: to help evaluate acquisition priorities in areas likely to convert to wetlands, based on suites of ecosystem services that may emerge.
- Approach: For each candidate parcel, identify and weight a diversity of ecosystem service values.
- The software uses response curves to evaluate how different ecosystem service values will change with increasing depth, cumulatively over time.

The purpose of valuation here is relative rather than absolute.

- Dollars allow comparison with other things that are valued and traded.
- ... but the task at hand is:
 - to determine values of parcels and mixes of ecosystem services *relative to one another...*
 - ...and how do those values change over time with sea level rise?
- So we created "Wetland Benefit Units" as the relative metric: units allocated by stakeholders through online Delphi surveys.

Pine Point

Ecosystem Services Weighted for Each Location

Flood Control Land Values Water Quality Water Supply Recreation Aesthetics **Carbon Storage** Habitat Connectivity Commercial Habitat Noncommercial Habitat Commercial Species Nutrient Supply Noncommercial Habitat Nutrient Supply Research

The Ranking Process

- Participants have a set number of units to spend among candidate parcels.
- Within each parcel they allocate units according to what they think is most valuable about that parcel today.

The survey looks like this for each parcel:

Please enter your allocation of Wetlands Benefits Units to Site 1 under existing conditions for each of the following services. In evaluating the allocations you may consider all available data that you wish, including published data, expert opinion, and local knowledge. You may come back to change your estimates after you enter the WBU values for the other sites.

Attenuation or prevention of flood damages to public or private property	0
Effects on land values of property adjacent to or with a view of the wetland	0
Effects on water quality through filtration of pollutants	0
Drinking water supply	0
Recreation (active like boating and hunting or passive like sightseeing and bird watching)	0
Aesthetics	0
Habitat for any life stage of commercially harvested species such as groundfish or shellfish	0
Habitat for any life stage of species significant for the preservation or enhancement of biodiversity, for example roosting, breeding, nesting, feeding, or wintering habitat for common and rare species	0
Carbon storage	0
Export of nutrients utilized by commercially harvested species	0
Export of nutrients utilized by species critical to biodiversity	0
As a research site for hydrologic, wildlife, or ecosystem studies	0
Habitat connectivity	0
Total	0

25

Pine Point

Starting Condition: Budget = 1,000 WBUs

Starting Condition: Post-Delphi

Each service has its own benefit curve as depth increases:

MAST beta workspace - MAST Benefit Assessment Tool

Consultants

File Model DST Help

Results

Parcel	Sea Level Rise	(Starting WBUs)	Cumulative WBUs
Audubon	1'	1180	
Pine Point	1'	750	
Hampton Circle	1'	1225	
Audubon	4'	1180	
Pine Point	4'	750	
Hampton Circle	4'	1225	
Audubon	6.6'	1180	
Pine Point	6.6'	750	
Hampton Circle	6.6'	1225	

Using sea level rise curves from the 2014 National Climate Assessment

9SUILS 1/60 th the si Hampton Ci	Sea Level		Cumulative	
Parcel	Rise	(Starting WBUs)	WBUs	
				14.2x
Audubon	1'	1180	3899	value
Pine Point	1'	750	3454	value
Hampton Circle	1'	1225	276	
				2.01
Audubon	4'	1180	4640	3.9x
Pine Point	4'	750	3261	value
Hampton Circle	4'	1225	1175	
				3.4x
Audubon	6.6'	1180	4803	
Pine Point	6.6'	750	3154	value
Hampton Circle	6.6'	1225	1410	

Using sea level rise curves from the 2014 National Climate Assessment

Hampton Circle: 1' SLR

Audubon: 1' SLR

Key Points

Need geographically sensitive software to evaluate where benefits are likely to emerge as marshes migrate.

- Helps prioritize land acquisition
- Helps identify where development may be more appropriate.

Results

Parcel	Sea Level Rise	(Starting WBUs)	Cumulative WBUs					
Fawcett	1'	690						
Vose	1'	675						
Leeman	1'	280						
Fawcett	4'	690						
Vose	4'	575						
Leeman	4'	280						
Fawcett	6.6'	690						
Vose	6.6'	575						
Leeman	6.6'	280						

Using sea level rise curves from the 2014 National Climate Assessment

Results

	Sea Level	(Starting	Cumulative	
Parcel	Rise	WBUs)	WBUs	
				21.5 x
Foursett	41	C00	0000	Value
Fawcett	1'	690	2929	value
Vose	1'	575		
Leeman	1'	280	136	
Fowoott	4'	600	4462	24.3 x
Fawcett	- -	690	4402	
Vose	4'	675	1.4.4	Value
Leeman	4'	280	184	
Fawcett	6.6'	690	4263	
		090	4203	
Vose	6.6'	b /b	262	20.7 x
Leeman	6.6'	280	206	Value
				40

Using sea level rise curves from the 2014 National Climate Assessment

Leeman Parcel

Great Marsh, Massachusetts Summer 2015

Commonwealth of Massachusetts Deval L. Patrick, Governor

Executive Office of Energy and Environmental Affairs Richard K. Sullivan Jr., Secretary

Massachusetts Office of Coastal Zone Management Bruce K. Cartisle, Director

A publication of the Massachuverts Differ of Coastal Zone Management (CZM) per want to National Oceanic and Atmospheric Administration Awar Ma, MA(BDS) appools. This publication is broked (in part) by a pranticooperative operaneous from the Rational Oceanic and Atmospheric Administration (BOAA). The views appressed here is are these of the outberful) and do not necessarily reflect the views of WOAA or any of its sub-agencies. Level [Ft NAVD88]

ative Sea

Bel

Massachusetts Office of Coastal Zone Management (CZM) 252 Clauseway Street, Suite Boo Soston, M. 2011a-2136 (617) 626-1200 CZM Information Lines: (817) 626-1212 www.mass.gov.czm

Table 3. Relative sea level rise estimates for Boston, MA. Global scenarios were adjusted to account for local vertical land movement with 2003 as the beginning year of analysis.

Scenario	2025		2038		2050		2063		2075		2088		2100	
	ft	m	T	m										
Highest	0.49	0.15	1.08	0.33	1.81	0.55	2.80	0.85	3.92	1.19	5.33	1.3	6.83	
Intermediate High	0.36	0.11	0.73	0.22	1.19	0.36	1.80	0.55	2.47	0.75	3.32	1 01	4.20	1
Intermediate Low	0.24	0.07	0.43	0.13	0.65	0.20	0.92	0.28	1.21	0.37	1.55	0. 7	1.91	9
Lowest (Historic Trend)	0.18	0.06	0.29	0.09	0.39	0.12	0.50	0.15	0.60	0.18	0.71	0.22		0.2
Range	0.31	0.09	0.79	0.24	1.42	0.43	2.30	0.70	3.32	1.01	4.62	1.41	6.02	1.8

Figure 5. Relative sea level rise scenarios estimates (in feet NAVD88) for Boston, MA. Global scenarios from were adjusted to account for local vertical land movement with 2003 as the beginning year of analysis.

December 2013

Parcel 9 Labor in Vain/Fox Creek area, Ipswich, 525.10 acres

Parcel 9 is located in Ipswich, northwest of Argilla Road, south and west of the Trustees of Reservations Crane Estate and Castle Hill, and east of Labor-in-Vain Road. It is <u>comprised</u> <u>mostly of tidal wetland areas</u>, with some forested areas towards the east and west of the center of the parcel. There is also some cleared land close to the center of the parcel that <u>may have some</u> agricultural purposes.

Several residences and buildings are located off of Labor in Vain Rd., which runs from the northwestern section of the parcel, through the center and out towards the southeastern section, ending at Fox Creek Rd. There is also a residence located at the dead-end of Fox Creek Rd.

GF

Initial Parcel Value Allocations

	Parc	els										
Services	1	2			<u>5</u>		7	8		<u>10</u>	<u>11</u>	
1 Prevention of flood damages		30	100	75	6	100	30	75	100	25	20	4
2 Increased land values	20	50	18	10	16	20	10	16	40	10	10	-
3 Water quality	10	10	100	30	10	20	20	30	100	10	20	
4 Drinking water supply		10	10	10	10	10	20	10	201	10	15	
5 Recreation		25	20	50	10	50	25	40	100	15	10	
6 Aesthetics		10	30	50	10	25	20	40	50	10	10	
7 Carbon storage		25	20	20	10	30	25	10	50	10	40	
8 Habitat connectivity		25	90	50	15	50	30	50	200	10	20	
9 Habitat for commercial sp.		10	20	75	10	75	10	50	70	10	10	
10 Habitat for biodiversity		15	15	75	20	50	25	50	50	10	20	
11 Nutrient export for commercial		25	20	10	10	15	10	10	30	5	10	
12 Nutrient export for biodiversity		6	30	20	20	30	25	10	50	6	20	
13 Research value		5	20	10	5	10	5	8	30	5	8	
(acres)	33	46	146	134	23	148	191	125	520	27	130	3.5 -
Totals	277	246	493	485	152	485	255	399	900	136	213	1.9 -

23x 5.9x

G

Great Marsh Parcels and Wetland Benefits Accrued in Three SLR Scenarios by 2100

Parcel 9 – 1.9 FT Sea Level Rise

Dam keeping 1.9' of SLR out of the pond

Parcel 9 – 4.2 FT Sea Level Rise

Dam could not keep 4.2' of SLR out of pond.

Parcel 9 – 6.8 FT Sea Level Rise

Parcel 9 – All Sea Level Rise Scenarios

Parcel 10 – All Sea Level Rise Scenarios

Dry Benefits vs. Wet Benefits

Benefits accumulate on the wet portions of parcels. Benefits are tallied separately on the dry portions while they remain dry. 54

Great Marsh Parcels and <u>Dryland</u> Benefits Accrued in Three SLR Scenarios by 2100

Great Marsh Parcels and Wetland Benefits Accrued in Three SLR Scenarios by 2100

Great Marsh Parcels and <u>Wet and Dryland</u> Benefits Accrued in Three SLR Scenarios by 2100

Other Uses of the Model

Habitat Restoration

- What benefits might accrue if we modify the landscape to allow water to gradually inundate different locations?
- or with different restoration actions?
- Should apply in urban and rural coastal contexts.

Using the Model and Concepts

- Process elements are published and replicable:
 - Dollar-free Wetland Benefit Unit framework
 - Journal of Ocean and Coastal Economics 2015 (2).
 - Online Delphi survey values allocation process
- GEI will partner with any interested groups

Limitations of the Model

- Data inputs are based on best available science, but
 - represent averages across a range of wetland types, tidal ranges, etc.
 - relatively little science is available for some depth relationships

WETLAND

- Other assump
 - wetlands will e
 - physical change accrue will occ

What It Is, How To Do It, and Best Practice Recommendations

ECOSYSTEM SERVICE

VALUATION FOR

RESTORATION

http://www.aswm.org/state_meeting/2014/ecosystem_service_valuation_for_wetland_restoration.pdf

But on the flip side

- Moving away from dollar valuation is appropriate.
 - Don't need dollars to measure how valuable something is!
- Central principles of economics are relied upon:
 - Resources are limited.
 - Decisions will have to be made anyway.
 - Even the soundest science imaginable won't be useful if people do not value something.

But on the flip side

- Knowing what we're actually doing actually helps:
 - Are we trying to predict the future? No.

And anyway ...

I actually heard this at an event last month:

"...we are <u>very confident</u> the values shown for future years will not be exactly as we are presenting here."

But on the flip side

- Knowing what we're actually doing actually helps:
 - Are we trying to predict the future? No.
 - We are increasing understanding of the relationship between physical changes in the landscape and the expected economic uses of that landscape.

Dilemma: Not being proactive enough about marsh migration.

Thank You!

Sam Merrill: 207-615-7523 smerrill@geiconsultants.com

Thank you for your participation!

www.aswm.org