LINKING COMPENSATORY MITIGATION AND RESTORATION OF RIPARIAN WETLAND FUNCTIONS AND VALUES

EMILY MECKE MAY 17, 2018 MASTER'S PROJECT ADVISOR: PROFESSOR GRETCHEN COFFMAN MSEM, UNIVERSITY OF SAN FRANCISCO

WHY SHOULD WE CARE?

In California's Central Valley, approximately 95% of riparian habitat has been lost due to human impact

Compensatory mitigation is typically not successful at restoring important functions

Results in overall loss of wetland functions that provide important ecosystem services

Sources: Griggs 2009, Ambrose et al. 2006, Sudol and Ambrose 2002

RESEARCH OBJECTIVES

Main Objective:

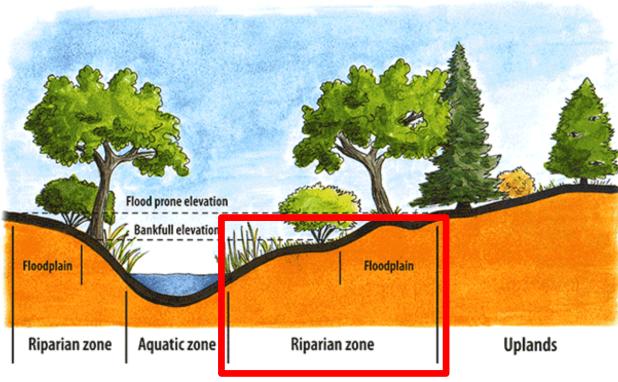
Provide recommendations to improve compensatory mitigation plans for riparian restoration projects to ensure restoration of riparian wetland functions and values.

Research Questions:

- What are the important and measurable riparian wetland functions?
- What assessment methods are effective at assessing riparian wetland functions?
- How can mitigation performance standards be improved to be linked to riparian wetland functions?

METHODS

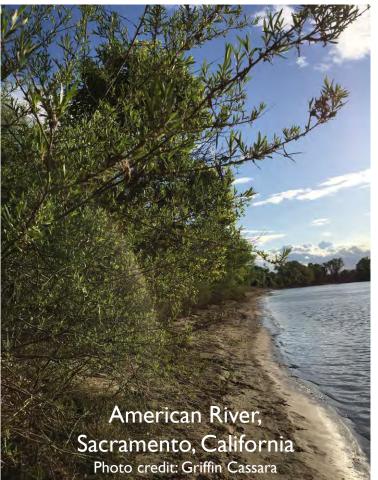
- Literature review
- Evaluated the effectiveness of three assessment methods
- Compared assessment methods to agency requirements
- Identified the functions and assessment methods most appropriate to use to develop performance standards
- Compared performance standards for three riparian mitigation banks in the Central Valley


CALIFORNIA'S CENTRAL VALLEY

- Riparian wetlands of the Central Valley include areas influenced by major rivers and tributaries that are bound by:
 - the Coast Range to the west,
 - the Sierra Nevada range to the east,
 - the Klamath Mountains and Cascade Range to the north,
 - and the Tehachapi Range to the south.

RIPARIAN WETLANDS

- Transitional zone between the terrestrial and aquatic ecosystems
- Hydrology is driven by the flood-pulse concept
- Vegetation is adapted to flooding (pulse) events and other terrestrial events


Source: http://slco.org/watershed/streams-101/the-riparian-zone/

Sources: Gregory et al. 1991, Junk et al. 1989

RIPARIAN WETLANDS: CALIFORNIA'S CENTRAL VALLEY

San Joaquin River Madera, California Photo credit: Emily Mecke

Creek in Lincoln, California Photo credit: Daniel Wong

RIPARIAN WETLAND ECOSYSTEM SERVICES

- Flood storage and protection
- Water quality improvement
- Biodiversity
- Wildlife corridors
- Groundwater recharge
- Recreation
- Cultural resources
- Aesthetic resources

Source: http://www.sacbee.com/news/local/article133007389.html

REGULATORY BACKGROUND

- Federal and State regulations that protect aquatic resources, including riparian wetlands
 - Federal Clean Water Act Section 404
 - Federal Clean Water Act Section 401, State Porter-Cologne Act
 - Section 1600 of the California Fish and Game Code

US Army Corps of Engineers ®

USACE 2008 MITIGATION RULE

- "No Net Loss" of aquatic resources
- Requires compensatory mitigation for impacts to aquatic resources
 - Restoration
 - Enhancement
 - Establishment (creation)
 - Preservation

Source: Griggs 2009

Performance Standard Categories	USACE 2015 Mitigation and Monitoring	Riparian Wetland Ecosystem Services
Physical Structure	Guidelines	Flood Storage and Protection
		Improving Water Quality
Hydrology		Biodiversity
Flora		Wildlife Corridor
Fauna		Groundwater Recharge
		Recreation
Water Quality		Cultural and Aesthetic
		Resources
USACE 2015		 Duffy and Kahara 2011

ASSESSMENT METHODS

Method	Date	Author	Туре
WET	1987	USACE Wetland Research Program	Functional
HGM	1995	USACE Wetland Research Program	Functional
CRAM	2013 (updated)	California Wetland Monitoring Workgroup	Condition

EVALUATION OF ASSESSMENT METHODS Functions evaluated

Performance standard category

Process/variables/indicators

Equipment needed?

Expertise needed?

Level of effort (high, medium, low)

Likely to change or develop over time?

Performance	WET		HGM		CRAM	
Standard Category	Function Evaluated	Potential?	Function Evaluated	Potential?	Function (Metric) Evaluated	Potential?
	Recreation	No	Maintain spatial structure of habitat	Yes	Structural patch richness	Yes
	Uniqueness/heritage	No	Maintain interspersion and connectivity	Yes	Topographic complexity	Yes
	-	-	-	-	Aquatic area abundance	No
	-	-	-	-	Buffer	No
Hydrology	Groundwater recharge and discharge	No	Groundwater recharge and discharge	No	Water source	No
	Floodflow alteration	Yes	Flood protection/energy dissipation	Yes	Channel stability	Yes
	-	-	Surface water storage	No	Hydrologic connection	Yes
Flora	-	-	Maintain characteristics plant communities	Yes	Plant community	Yes
	-	-	Maintain characteristic detrital biomass	Yes	Horizontal interspersion	Yes
	-	-	-	-	Vertical biotic structure	Yes
Fauna	Aquatic diversity and abundance	Yes	Maintain distribution and abundance of invertebrates	Yes	-	-
	Wildlife diversity and abundance	Yes	Maintain distribution and abundance of vertebrates	Yes	-	-
Water Quality	Sediment stabilization	Yes	Retention of particles	Yes	-	-
	Sediment/toxicant retention	No	Removal of imported elements and compounds	No	-	-
	Nutrient removal/transformation	Yes	Nutrient cycling	Yes	-	-
	Product export	No	Organic carbon export	No	-	-

EVALUATION OF RIPARIAN MITIGATION BANKS

- Cosumnes Floodplain Mitigation Bank
- Bullock Bend Mitigation Bank
- River Ranch Wetland
 Mitigation Bank

EVALUATION OF RIPARIAN MITIGATION BANKS

Mitigation Bank	Reference Site(s) Used?	Assessment Method Used?	Consistent with USACE 2015 Mitigation and Monitoring Guidelines?
Cosumnes Floodplain Mitigation Bank	Yes	Yes	No Before guidelines were published
Bullock Bend Mitigation Bank	Yes	Yes Only to evaluate reference sites	Yes
River Ranch Wetland Mitigation Bank	Yes	No	No Before guidelines were published

MANAGEMENT RECOMMENDATIONS

Riparian Mitigation Banks in the Central Valley:

- Continue to use multiple reference sites
- Include performance standards for all five performance standard categories
- Use assessment methods to evaluate reference sites and provide a model for performance standards

MANAGEMENT RECOMMENDATIONS

General Recommendations:

- Reference standard (site) is KEY (Van den Bosch and Matthews 2017)
- Develop performance standards for all five performance standard categories
- Use different functions from each of the assessment methods
- Use functions that are likely to change and/or develop over time
- Use functions that are easily measured in a mitigation monitoring scenario (Collins 2018)
- Develop interim standards for monitoring to ensure restoration is on the right trajectory (Matthews and Endress 2008)

MANAGEMENT RECOMMENDATIONS

Permittee-Responsible Riparian Restoration Projects in the Central Valley:

Performance Standard Category	Assessment Method	Function
Physical structure	CRAM	Structural patch richness
Hydrology	HGM	Flood protection and energy dissipation
Flora	CRAM	Plant community
Fauna	WET	Wildlife abundance and diversity
Water quality	WET/HGM	Sediment stabilization/retention of particles

Special thanks to: Professor Gretchen Coffman, Ph.D. Tara Collins, Westervelt Ecological Services Taraneh Emam, Ph.D, ECORP Consulting, Inc.