Hydrological and biological responses to restoration of dynamic alluvial valleys at Robinson Fork, PA Searching for indicators of water and nutrient retention

Dr. Kelly Johnson^{1,2} (presenter), Dr. Natalie Kruse-Daniels² Jen Bowman, Tatiana Burkett*, Annika Gurrola*, Kelly Love*, Red Pazol*, Nora Sullivan, Ashlee Widener*, Morgan Vis

¹Biological Sciences

²Voinovich School of Leadership and Public Affairs

* Student theses (graduate or undergraduate honors)

Ohio University, Athens OH

Typical stream

'Pre-settlement' stream wetland complex

Images from J. Hartranft PA Legacy Sediment Workgroup

Restoration of dynamic alluvial valley should

- Increase water storage during peak and low flows
- Reduce erosion/improve sediment retention
- Enhance geochemical cycling (longer inundation periods)
- Reduce nutrient export
- Mosaic of habitat types (different flows, velocity, depth) for biodiversity
- Have high secondary production, biodiversity

(Flitcroft et al. 2022, Leberg and Topping 2023, Goerman et al. 2013, Kaushal et al 2014, Parola and Hansen 2011)

Objectives

Characterize and compare functional aspects of restored and unrestored sites

- Water storage
- Sediment retention and export
- N and P retention and export
- In-stream primary production (periphyton)
- Macroinvertebrate communities (diversity and biomass)
- Carbon accumulation and retention (soil organic content, woody debris, terrestrial litter input, decomposition rates)
- Vegetation
- Amphibian breeding habitat

Robinson Fork Stream Mitigation area

- 14.4 square miles in Western PA, Western Alleghany Plateau
- Forest cover 70%, 5.67% urban development, and 0.23% impervious surface
- Some historical agriculture, timbering and coal mining
- Designed/Implemented by LandStudies & RES
- Six sites 3-4 years post-restoration (in 2019)

6 restored sites (Robinson Fork)

4 forested, single channel (Ryerson)

Kent Run **Poland Run**

Ryerson Station State Park forested streams

- 76% forest cover, 5.74% urban development, 0.24% impervious
- Historical mining, timbering

Water Chemistry QUARTERLY

- Samples analyzed for TSS, N, and P,
- TOC
- Myron Ultrameter used for field parameters
- Hach kits total N and P used for higher frequency/field tests

Flow and Water Storage

- Channel flow with flume, SonTek, or pygmy
- Salt tracing to measure transient flow with YSI meter
- Water storage is difference between salt tracing flow (includes vadose zone) and channel flow
- Water depth monitored w/divers

Water Storage (pre- and post) estimated from historical precipitation data and water level monitoring

Molinari Water Depth by API (Yearly)

Precipitation by Year in Waynesburg PA

Flatter slope post-restoration (green) indicates water level is not influenced by periods of high precipitation as much as it was pre-restoration (blue)

Wadeable (larger) streams

Molinari – 14.2 mi² - Slope decreased postrestoration. Water level stays consistent over a wide range of wetness and is not influenced by periods of high precipitation as much as it was pre-restoration.

Less flashy

Lebanik – 20.9 mi² - Water level was lower post-restoration. Contrary to expectation, it behaves oppositely Molinari and the slope increases post-restoration. Water level was more influenced by periods of high precipitation More flashy after restoration

Midsized headwater streams

Beham − 3.0 mi² -Water level was higher post-restoration. Slope increased postrestoration.

More flashy

Molinari Trib – 0.83 mi² - Slope decreased post-restoration. Water level is not influenced by periods of high precipitation as much as it was pre-restoration.

Less flashy

Smallest (Primary) headwaters

McCulley – 0.05 mi² - Slope decreased postrestoration

Less flashy

Unit 4D – 0.05 mi² - no pre-restoration data, but the trendline is flat like most of the other sites post-restoration, so likely a decrease

Likely less flashy

Sediment Dynamics

- Sediment pit traps at all downstream sites
- Grain size distribution
- TN and TP concentrations
- Trowel method when needed

Sediment retention

Restored stream complexes retained more fine-grained sediment

Unrestored (Forested channel)

Sediment Nutrients

• Higher nutrients in restored sites

Pre

Sediment Dynamics - still in process

 TSS load export/sq mi was highest in high flow, lowest during low flow months (July)

Nutrient Flux – still in progress Varies with flow (season) Lowest export in July

March Nutrient Export Per Square Mile

Macroinvertebrates

SAMPLING METHODS
Quant: Riffle – kicknet (n=3)
Depositional – 'bucket' (n=5)
Qual: Edges, woody debris, pools – 20
jabs with D-ring dipnet

METRICS

- Total biomass, abundance, richness, diversity, %EPT
- Biomass of Elmidae, Heptageniidae, Hydropsychidae and Chironomidae

Periphyton

- July 2019
- 10 rock scrubs
- Lyophilized
 - AFDM
 - Chlorophyll a

Water quality in July 2019

Nitrate levels did not differ between restored sites and forested ($F_{1,8} =$ 1.7971, p = 0.22)

Phosphate levels did not differ ($F_{1,8}$ = 3.892, p = 0.084)

Periphyton influenced by stream size, not restoration status

Mean chlorophyll a differed between sites ($F_{9,29}$ = 28.74, p < 0.0001) and stream size ($F_{2,86}$ = 37.02, p < 0.0001) but not between forested and restored sites ($F_{1,87}$ = 0.1642, p = 0.6863).

Mean AFDM (g) did not differ among stream size ($F_{2,27} = 0.4608$, p = 0.6356), or between forested and restored sites ($F_{1,28} = 0.0257$, p = 0.8738)

Chlorophyll a increased with drainage area Negative correlation with nitrate

Drainage Area and Mean Chlorophyll a Linear: R^2 =0.60, $F_{1,8}$ = 11.9, p = 0.0087

Total Nitrate and Mean Chlorophyll a Linear: $R^2 = 0.42$, $F_{1,8} = 5.79$, p = 0.043

ightarrow

igodol

ightarrow

Chlorophyll a increased with drainage area Negative correlation with nitrate Periphyton predicted macro biomass, abundance

Drainage Area and Mean Chlorophyll a Linear: R^2 =0.60, $F_{1,8}$ = 11.9, p = 0.0087

Total Nitrate and Mean Chlorophyll a Linear: $R^2 = 0.42$, $F_{1,8} = 5.79$, p = 0.043 Macroinvertebrate abundance correlated with chl a biomass $R^2 =$ 0.50, $F_{1,8} = 8.15$, p = 0.021

Restored sites (stream-wetland complexes) had similar taxa richness but fewer EPT taxa

% EPT Taxa not affected by drainage area ($F_{1,8} = 0.8086$, p = 0.395) but did differ between forested and postrestoration stream complexes ($F_{1,8} = 16.681$, p = 0.003)

Macroinvertebrate community composition differed between restored and unrestored sites

UNH Center for Freshwater Biology

Family composition differed between restored stream-complexes and unrestored forested sites ($F_{1,8}$ = 2.7969, p = 0.033) and stream size ($F_{2,7}$ = 3.0251, p = 0.012)

Functional links between nutrients > periphyton > macroinvertebrate biomass (Braccia et al. 2023)

Organic matter too? inputs breakdown (shredders) retention/export Litter bags, water TOC, woody debris inventory, terrestrial litter traps, soil organic content (SOC)

Figure 1: Generalised food web for floodplain-river ecosystems (adapted from Winemiller 2003)

Boxes are aggregate material pools and vectors represent consumer resource interactions with thick arrows representing dominant pathways (ml= microbial loop path, fp = nutrient pathways enhanced by flood pulses, iw = invertebrate web having complex trophic structure involving invertebrates and ? = poorly quantified pathways).

Water Total Organic Carbon (TOC): a useful measure?

bog	33 ppm
marsh	17
Eutrophic lake	12
Oligotrophic lake	2
River	7

Hach Test 'n Tube method TOC measured using DR2800 spectrophotometer

> TOC and Season p< 0.05 No effect of restoration status

Leaf litter breakdown

Predicted faster decomposition in stream-wetland complexes

- not supported

Large Woody Debris Index (LWDI)

- 100 m reach
- Dead wood >10 cm diameter and > one-m long
- More than 3 pieces together is a 'debris dam'

For each piece of wood: Length/Diameter (cm) Type (bridge, ramp, buried, and submerged) Structure (amount of branches/roots attached) Stability (potential mobility) Orientation (degrees), Bankfull width

No relationship between large woody debris and TOC or Restoration Status

Leaf Litter Inputs

- 5 baskets per site
- Random placement with in the 100m stretch of stream with a 3m buffer on each side of the stream
- Collected every 2 weeks (10/10, 10/24, 11/6, 11/19 and 12/3)
- Leaf litter dried and weighed

No statistical relationship between leaf litter input and TOC or Restoration Status

Soil Organic Matter (SOC)

- Twenty cores per sample reach
- Within 3 m of stream channel
- Pooled and oven dried
- Ground and sieved (500g of fine soil)
- 3 reps of 50g of soil per site
- Ashed at 400° C for 3 hours
- Mass Loss on Ignition = Soil Organic Content

No effect of soil organic matter on TOC.

Soil organic matter higher at restored sites p<0.05

Conclusions

Water storage

- Increased at four of six restored sites

Sediment

- Higher proportion of fine-grained sediment at restored sites

Nutrients

- Sediment: Higher N and P in restored site sediments
- Dissolved N and P variable

Periphyton biomass follows stream size/light and nitrate, not restoration status

- Predicts macroinvertebrate biomass (esp. scraper-grazer and collector-filterers) Macroinvertebrate

-Restored sites had similar taxa richness and diversity, high biomasses, but fewer EPT taxa Organic matter

-Carbon Inputs (woody debris, leaf litterfall) and litterbag decomposition not different

-Total organic carbon (TOC) varied by season, not restoration status

-Soil organic content (SOC) higher at restored sites

Acknowledgements

- Special thanks to...
 - Pennsylvania Department of Environmental Protection
 - Land Studies and RES
 - Ephriam Zimmerman and Western Pennsylvania Conservancy
 - Students Kristin Harnish , Dale Mondale, Brittney Sargent, Mohsin Khan
 - Voinovich School faculty/staff Nichole Kirchner, Nicole Mazzone, Sebastian Teas

