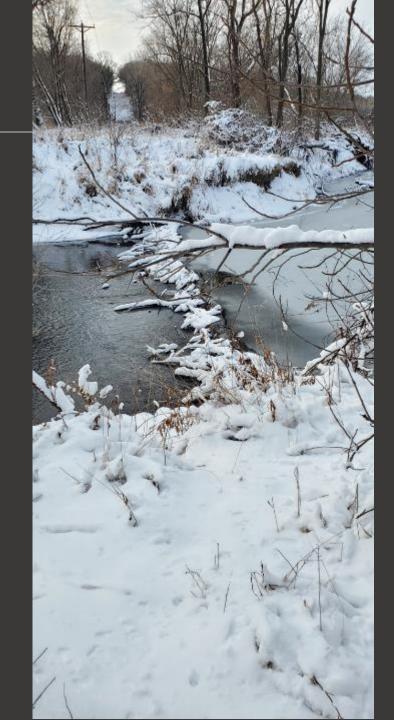
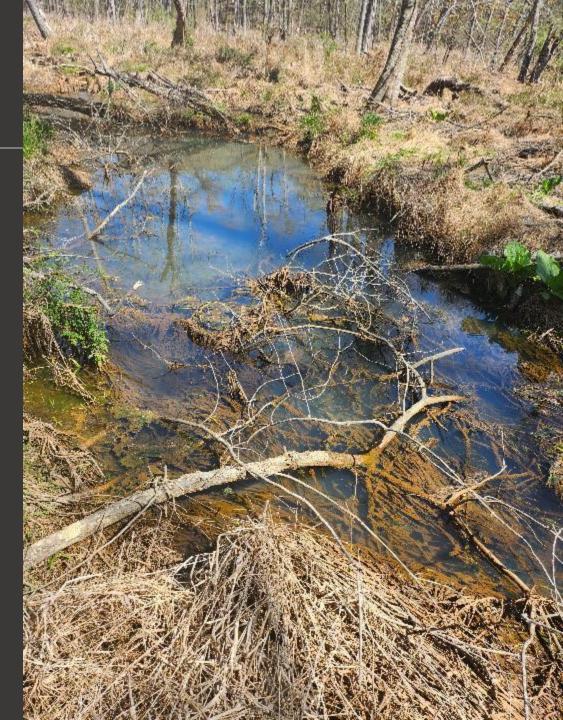

Expanding Monitoring and Performance to Dynamic Alluvial Valleys

Sam Leberg

Oak Ridge Institute for Science and Education Fellow at the EPA


Stream Compensatory Mitigation

- Compensatory Mitigation required for dredge and fill impacts under Section 404 of the Clean Water Act
- 2008 Mitigation Rule
 - Standardized review and approval
- Monitoring requirements and performance standards central to the evaluation of compensatory mitigation projects


Stream Compensatory Mitigation

- Stream mitigation practices have focused on stability and form, particularly perennial singlethread transport channels
 - Determining compliance is relatively straightforward
- Existing mitigation protocols increase time and effort required for reviewing other stream types and restoration approaches
 - Limited best practices for process-based frameworks
 - No standard methodology for addressing healthy dynamism including beaver
 - Metrics lacking for retentive and multi-thread systems

What is needed?

- Regulators and mitigation providers need tools to monitor and evaluate retentive systems
 - Identify healthy versus degrading sites
- Healthy dynamic systems will naturally experience shifting habitats across their site
 - Requires an approach addressing a range of potential outcomes
- Design considerations are important for successful implementation
- Informed a performance and monitoring document

Monitoring Report

- "Expanding Monitoring and Performance to Dynamic Alluvial Valleys"
- This report provides a national resource for the stream compensatory mitigation community to consider when proposing or evaluating dynamic alluvial valleys
- Sections
 - Design Considerations
 - Monitoring Considerations
 - Performance Metrics
 - Adaptive Management
- Published as Proceedings Document on the National Stream Restoration Conference Website

Report downloadable under "Workshop Proceedings" heading

Methodology

- Created a series of questions to examine performance standards & monitoring requirements
 - Identify other areas where changes are needed
- Conducted semi-structured interviews with 60 participants concurrently with literature review
- Regulators (18)
 - EPA
 - Corps
 - States
- Practitioners (27) & academics (15)

Acknowledgements

Megan Fitzgerald and Christine Mazzarella (Environmental Protection Agency [EPA]) Region 3); Eric Somerville and Bill Ainslie (EPA Region 4), Kerryann Weaver (EPA Region 5); Aaron Blair and Rachel Harrington (EPA Region 8); Joseph Morgan, Melissa Scianni, and Jennifer Siu (EPA Region 9); Tracie Nadeau (EPA Region 10); David Olson (United States Army Corps of Engineers [USACE] Headquarters); Nick Ozburn (USACE Baltimore District); Justin Hammonds and Adam White (USACE Savannah District); Todd Tugwell (USACE Wilmington District); April Marcangelli (USACE St. Paul District); Michelle Mattson (USACE Institute of Water Resources); Periann Russell (North Carolina Department of Environmental Quality); Dave Goerman (Pennsylvania Department of Environmental Protection); Joe Berg (Biohabitats Inc.); Caroline Nash (CK Blueshift LLC); Ellen Wohl and Jeremy Sueltenfuss (Colorado State University); Amy Braccia (Eastern Kentucky University); Cidney Jones and Rich Starr (Ecosystem Planning & Restoration); Jason Coleman and Matthew Hubbard (Ecotone, Inc.); Paul Mayer (EPA Office of Research and Development); Lucy Harrington (GEI Consultants); Mike "Rocky" Hrachovec (HydroGeoLogic, Inc.); Benjamin Ehrhart and Ward Oberholtzer (LandStudies, Inc./Century Engineering); Ashton Bunce, Jeanette Blank, Leah Swartz, and Wendy Weaver (Montana Freshwater Partners); Bob Siegfried, Katie Wolff, Michael Sachs, and Matthew Stahman (Resource Environmental Solutions); Adam Riggsbee (RiverBank Conservation); Eric Stein (Southern California Coastal Water Research Project); Will Harman (Stream Mechanics); Lindsay Teunis (SWCA Environmental Consultants); Art Parola, Jesse Robinson, Michael Croasdaile (University of Louisville); Gordon Grant, Paul Powers, Johan Hogervorst, and Rebecca Flitcroft (United States Department of Agriculture Forest Service); Joseph Wheaton (Utah State University); Alex Fremier (Washington State University); Peter Skidmore (Walton Family Foundation); AJ Jones and Joe Rudolph (Wolf Water Resources); Janine Castro (United States Fish and Wildlife Service); and Barbara Doll (North Carolina State University). Thank you also to Brian Topping (EPA) for mentionship and support throughout the development of the report and my ORISE fellowship at EPA.

Dynamic Alluvial Valleys (DAVs)

Stream System, not a design practice

 Depositional/retentive systems within the stream network whose form is dominated by biological drivers (vegetation, beaver, etc)

 May be multithreaded, and the location and relative coverage of specific habitats may change between monitoring periods

Defined by four key processes

Extensive lateral and vertical connectivity-Biologically active surface and subsurface connectivity is maintained even during baseflow conditions

Creation and maintenance of diverse <u>habitats</u>-The channel and the floodplain are a part of a united mosaic of streams and wetlands

 <u>Retention of materials</u>-The valley retains sediment and organic matter.

Abundant biological communities valley supports an abundant (often diverse) biological community that contributes to the form of the valley

Monitoring Procedures

- Valley-wide transects
- Large site-scale assessments
 - GIS, LiDAR, and drone-based photography
 - Hydraulics and geomorphological, some vegetation metrics
- Random grid-based sampling (Hinshaw et al. 2022)
 - Encompassing in-channel and floodplain
 - Geomorphology and biological metrics
- eDNA monitoring
 - Amphibians and fish, some macroinvertebrate metrics.

Metric Identification and Selection

- Interviewee input
- Literature Review
- Selected metrics to indicate
 - Presence of Key functions
 - Site not trending towards failure
 - Without utilizing stability measures
 - Improvement from baseline

Key	y Processes of DAV lost	Failure Point(s)	
late	ss of extensive ral and vertical connectivity	Failure of valley-wide grade control(s)	
Lc	oss of habitat	Failure to account for channel drying and loss of water	
	diversity	Failure to account for excessive deposition	
Loss	of net retentive	Failure to design transitions with upstream and downstream reaches	
	valley	Failure to account for excessive erosion	
	s of biological ommunities	Failure to establish desirable vegetative communities	
C		Failure to design for poor water quality	

Performance Metrics

Key Proce	s Parameter	Indicator	Target	Timing	Notes & Considerations	
Extensive Lateral and Vertical Connectivity	Floodplain Connectivity	Flooding/Inundation frequency, duration, and/or aerial extent; stream gage, ground water wells, water presence sensors, other continuous monitoring 企田 常	events or duration in a	all years	Indicative of a large flood-prone area frequently laterally connected. Specifics will vary by region. As used by practitioners in Pennsylvania, 4 times per year in a normal year, coupled with visual evidence of floodplain inundation in spring season.	
Creation and Maintenance of Diverse Habitats	Depth Diversity	Coefficient of Variation of Depth E	Increase compared to pre-project conditions; Meeting or exceeding reference conditions	Monitored in all years	Depth diversity indicates in-channel habitat and variable zones for temperature and sediment deposition. A matrix of stream depth can be created with aerial and multispectral imagery. Different depths can then be classified, and variation quantified. Restored DAVs should result in a high diversity of depths though specific numerical targets would be regionally-dependent.	

Key Process	Parameter	Indicator	Target	Timing	Notes & Considerations
Retention of Materials	Carbon Retention	Visual, photo station or otherwise	60% of monitoring stations, pieces of LWD retaining CPOM	Monitored in all years	This metric target would demonstrate that a site can retain carbon but would not necessarily demonstrate successive carbon retention. The target will vary by region and site-specific conditions and should only apply to a normal flow year.
Abundant Biological Communities	Amphibian Communities	Native abundance	Native quantity increase compared to control reach	Monitored in all years after the first	Retentive systems will result in a larger wetted area that may support more amphibians. Particularly in headwater streams, amphibian metrics may more reliable than fish metrics. For amphibian metrics, sample the perimeter of the reach as well as the underside of logs.

Metric Organization

Key Process	Stream Function Pyramid Level	SFAM Key Functions	Parameter	Indicator	Citation
Connectivity	Hydraulics	Surface water storage, sub/surface transfer, flow variation, sustain trophic structure, nutrient cycling, chemical regulation, thermal regulation	Groundwater and Surface Water Exchange	Monitoring wells ▲ ⊞	Robinson Fork Mitigation Bank, Quaker Mitigation Bank
Extensive Lateral and Vertical Connectivity	Geomorphology	Surface water storage, flow variation, sediment continuity, create and maintain habitat	Lateral Migration	Bank Erodibility Hazard Index (BEHI)	Upper Susquehanna River Mitigation Bank-Phase 2, Codorus Creek Stream & Wetland Bank
	Physicochemical	Surface water storage, sub/surface transfer, flow variation, thermal regulation,	Temperature	Surface or mean water temperature through water column- DM, MWAT, monthly average (summer or winter) ⊞	Great Pee Dee Mitigation Bank, Upper Susquehanna River Mitigation Bank-Phase 2, Pollock et al. 2003

Adaptive Management-Example

	Expected/designed	Endpoints	
	Endpoint	Acceptable Endpoints	Unacceptable endpoints
Extensive Lateral and Vertical Connectivity– Vegetation	Wet meadow: Performance standards include aerial dominance by herbaceous species and presence of hydrophytic vegetation, with limits on invasive species coverage. If floodplain is inundated (i.e., regular overtopping flows) for extended periods during monitoring, percent coverage by herbaceous species may be reduced.	metrics (e.g., minimum woody stems per acre, species diversity and composition	Community: Community is dominated by upland species. Hydrophytic and wetland

Contact Information

- Sam Leberg Leberg.Samuel@epa.gov
- Brian Topping <u>Topping.Brian@epa.gov</u>
- <u>https://restorestreams.org/202</u>
 <u>3 workshop 6</u>

Report downloadable under "Workshop Proceedings" heading