

Florida Department of Environmental Protection Submerged Lands & Environmental Resources Coordination

Florida Wetland Integrity Dataset (FWID)

Wetland Mapping Consortium July 15, 2015

John Humphreys AmirSassan Mahjoor

Florida Wetland Integrity Dataset (FWID)

Presentation Outline

- 1. Project Scope and Goals
- 2. Predicting Wetland Presence
 - A. Bayesian Vs. Frequentist Methods
 - B. Identifying Explanatory Variables
 - i. Interrogating (bulk) Soils Data
 - ii. Estimating Available Water Capacity (AWC)
 - iii. Topographic Indices
 - iv. Spatial Correlation The Neglected Variable

C. Model Construction

- i. Model Selection
- ii. The "Final" Model
- iii. Results
- 3. Summary and Closing
- 4. Q & A

Project Scope and Goals

- 1. Approximate the locations and extents of wetlands and other surface waters throughout Florida.
- 2. Approximate the *integrity* and condition of natural communities throughout Florida.
- 3. Develop products that will remain valuable into the future.
- 4. Apply scientifically rigorous methods.

Predicting Wetland Presence

Example Study Area for Today's Talk

Bayesian Vs Frequentist Statistical Inference

Frequentist

- Probability of the data given the hypothesis $P(Y|H_0)$
- Use of a P-value
- Standard "significance" cut-off of P-value is the Neyman–Pearson acceptable probability of committing a Type-I statistical error (α = 0.05)
- If P-value is "small," reject H₀ a "pass or fail" significance test
- Probability is a frequency dependent concept in which the "true value" is realized only with the "true" population (∞)
- Includes a "confidence interval" that is also frequency dependent: ratio of events of interest to total events observed

Bayesian

- Probability of the hypothesis given the available data $P(H_0|Y)$
- No P-value
- Results are reported as a continuous probability ("posterior distribution") rather than a pass/fail test
- Setting the α at 0.05 or any other value is arbitrary
- Probability is subjective in that it quantifies a degree of belief based on prior knowledge ("prior distribution") and likelihood using the data at hand rather than an assumption of an infinite population
- Includes a "credible interval" that is not frequency dependent but rather reflects the *belief* that the "true value" falls within a particular interval

Interrogating Soils Data

Steps

- 1. Differentiate those soil mapping units (SMU) associated with wetlands from those associated with uplands.
- 2. Decompose SMU attributes from categorical data to a unique and continuous numeric index scaled by the amount of variation that each explains.
- 3. Evaluate the decomposed values ability to predict the wetland or upland association identified in Step #1 and discard those that do not significantly predict their association. Retain those that do predict their association for possible model inclusion.

Objective 1: Differentiate by Wetland/Upland Association

Natural Wetland Land Cover Natural Upland Land Cover

Soil Map Unit (NRCS SSURGO)

- 1 = Soil Associated with Wetland
- 0 = Soil Associated with Upland

Designation	NUSYM	MUNAM	FARMINDCI	WIDEPANNME	PONDERFORR	HYDCI PRS	COMPRCT_R	MAICOMPELISE	LOPE_R	SLOPE H	TFACT	WES	
1	3	Alpin sand, 0 to 5 percent slop	Not prime farmland	0	0-14%	Not hydric	85	Yes	3	5		s	ļ
1	94	Pickney soils, occasionally fla	Not prime farmland		75-100%	Partially hydric	85	Yes.	1	2		5	ļ
0	35	Scranton sand	Not prime farmland	8	0-14%	Partially hydric	65	Yes	1	2	A	5	ļ
0		Alpin sand, 0 to 5 percent slo	Not prime farmland	0	0.14%	Not hydric	88	Yes	3	5		s	1
0	28	Alpin fine send, 0 to 5 percen	Not prime farmland		0-14%	Not hydroc	85	Yes	3	5	1.1.1.1	5	Ì
0	44	Pickney soils, occasionally flo	Not prime farmland		75-100%	Partially hydric	85	Yes	1	2		5	į
1	33	Scranton sand	Not prime formland	8	0 14%	Partially hydric	65	Yes	1	2	1	5	1
1	4	Pickney soils, occasionally flo	Not prime farmland	0	75-100%	Partially hydric	85	Yes	1	2		s	1
1	94	Pickney soils, occasionally flo	Not prime farmland		/5-100%	Partially hydric	85	Yes	1	2		5	ļ
.0	10	Kershaw sand, 0 to 3 percent	Not prime farmland		0-14%	Not hydric	85	Yes	3	5		5	į
1		Chipley fine sand, 0 to 2 perce	Not prime farmland	70	0.14%	Partially hydric	80	Yes	- 1	2		5	Ì
1		S Chipley line sand, 0 to 2 perce	Not prime farmland	76	0-14%	Partially hydric	80	Yes.	1	2		5	į
0	15	Kershaw sand, 5 to 8 percent	Not prime farmland		0-14%	Not hydric	80	Yes-	1	8	1.1.1	5	ļ
0	1	Alpin sand, 0 to 5 percent slo	Not prime formland		0 14.8	Not hydric	85	Yes	3	5		5	1
1	1	printing of the second state of the	all of a dama default of		75 4000	Denkieller beidele	05	114.0				-	1

A technique from linear algebra that breaks down a rectangular matrix into the product of three matrices: an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V.

- Orders attributes by the amount of variation they explain
- Relationships between attributes is preserved
- Ensures that attribute indices are not correlated

Objective 2: Convert to Continuous Index Scaled by Variation (continued)

	MUNAME	FARMINDCL	WTDEPANNMI PONDER	FORR HYDOLPRS	COMPRET_R MAICOMPRI	SLOPE_R	SLOPE_H TEACT	WEG
	Alpin send, 0 to 5 pe	ecent slop Not prime familian	0.0-14%	Not hydrac	as Tes	3	-	5
44	Pickney solls, occasi	ionally fio Not prime familar	d 0.75-100%	Partially hydrin	RS Yes	1	2	.5
38	Scranton sand	Not prime faimlan	d. 8.0-14%	Partially hydric.	65 Yes	1	2	5
4	Alpin sand, 0 to 5 pc	ercent slop Not prime farmlan	d 0.0 14%	Not hydric	88 Ycs	. 3	5	5
28	Alpin fine send, o to	5 percent Not prime familian	0 0.14%	Not hydric	85 745	3	- 5	5
49	Pickney stills, occasi	unally fic Not prime familar	0 /5-100%	Partially hydric	85 Yes	1	1	-
18	Screnton send	Not prime familian	4 8.0-14%	Partially hydric	d5 Yes	1	2	.5
44	Distancy solis, occasi	ionally fie Not prime familar	0.75-100%	Partially hydric	85 Yes	1	2	30 N
44	Korchaw cood, p.to.s	ionally fie Not prime familian	0 /5 100%	Not being	85 900	-	2	5
10	Churches from send in	for 2 pairs Not be may familian	45 0,74%	Partially hading	80 945		1	5
	Chipley tine send 0	to 2 perce Not prime (similar	75 0-145	Fartially hydric	AD Yes	1	2	
19	Kershaw sand, 5 to 9	percent · Not prime familar	d. 0.0-14%	Not hybric	ap Yes	7		5
3	Alpin sand, 0 to 5 po	arcent slop Not prime familian	0.0 14%	Not hydric	85 Yes	3	5	5
	Notes of the second	south the transmitter formula	2	Controll should be	at here		4	11
					(a recta	angul	ar matri	ix)
$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	\hat{X}_{1} x_{12}	. x _{1n}	(u ₁₁ i	u_{1r}) (s_1	^s ^{10…})	($V^{T}_{v_{11}}$	v1n
$\begin{pmatrix} x_2 \\ \vdots \\ x_m \end{pmatrix}$	x_{22} \dots \vdots \ddots $m \times n$	$\left(\begin{array}{c} x_{mn} \end{array}\right) \approx$	$\begin{pmatrix} \vdots & \ddots \\ u_{m1} & & u \\ & m \times r \end{pmatrix}$	t_{mr} $\begin{pmatrix} 0 \\ \vdots \\ \vdots \end{pmatrix}$	$\left(\begin{array}{c} \cdot \cdot \\ & \\ & \\ r \times r \end{array}\right)$	(v_{r1} $r \times n$	v _{rn})
$\begin{bmatrix} x_2 \\ \vdots \\ x_m \end{bmatrix}$	$m \times n$	$\left(\begin{array}{c} x_{mn} \end{array}\right) \approx$	$\begin{pmatrix} \vdots & \ddots \\ u_{m1} & u \\ m \times r \end{pmatrix}$	t_{mr}) $\begin{bmatrix} 0\\ \vdots\\ \end{bmatrix}$	$\left(\begin{array}{c} \cdot \cdot \\ s_{rr} \end{array}\right)$ $r \times r$	C	$\vdots \cdots$ v_{r1} $r \times n$ onduct	v _{rn})
x_2 \vdots x_m	$m \times n$	$\left(\begin{array}{c} x_{mn} \end{array} \right) \approx$	$\begin{pmatrix} \vdots & \ddots \\ u_{m1} & u \\ m \times r \end{pmatrix}$	umr) (0 V4	$\left(\begin{array}{c} \cdot \cdot \\ s_{rr} \end{array} \right)$	(C	$\vdots \cdots$ v_{r1} $r \times n$ onduct	v _{rn}) SVD
1 -0	$m \times n$ $m \times n$ $m \times n$ V1 0.1856695	× x _{mn}) ≈ V2 0.1140680 ·	(: ·. u _{m1} u m×r V3 •0.42420481	(mr) (0)) ··. s _{rr}) r×r · ··· · ···· · ··· · ··· · ··· · ··· · ···· · ····· · ···· · ····· · ····· · ····· · ····· · ····· · ······ · ········	(C /5 75 2	v_{r1} $r \times n$ onduct v_{r} .0482152	v _{rn}) SVD
x2: ; xm 1 -0 2 -0	1 x22 : · m × n V1 0.1856695 0.1698416	x _{mn}) ≈ x _{mn}) × V2 0.1140680 -0.9475450	U3 0.42420481 0.09416006	(mr) (0) V4 -0.08014229 0.18175889) ··. s_{rr}) $r \times r$) -0.2812047) -0.0457422	C 75 2 27 -0	: · · . <i>v_{r1}</i> <i>r × n</i> onduct .0482152 .8454400	v _{rn}) SVD
1 -0 2 -0 3 -0	1 x22 : · 1 m×n V1 0.1856695 0.1698416 0.1655010	×mn) ≈ xmn) × V2 0.1140680 -0.9475450 -0.6869339	U3 0.42420481 0.09416006 0.19898838	V4 -0.08014229 0.18175889 1.58933469) ··. s_{rr} / $r \times r$) -0.2812047) -0.0457422) -0.0430631	C 75 27 -0 14 -0	: · <i>v</i> _{r1} <i>r</i> × <i>n</i> onduct .0482152 .8454400 .3930182	vrn) SVD
1 -0 2 -0 3 -0 4 -0	1 x22 : · m × n V1 0.1856695 0.1698416 0.1655010 0.1810848	×mn) ≈ xmn) × V2 0.1140680 - -0.9475450 -0.6869339 0.1327860 -	U3 0.42420481 0.09416006 0.19898838 0.43814525	(mr) (0 W4 -0.08014229 0.18175889 1.58933469 -0.06470997	, · · . <i>s_{rr}</i> / <i>r</i> × <i>r</i> -0.2812047 -0.0457422 -0.0430631 -0.2332995	C 75 2 27 -0 14 -0 58 2	: · · . <i>v_{r1}</i> <i>r × n</i> onduct .0482152 .8454400 .3930183 .0505963	^v rn) SVD
1 -0 2 -0 3 -0 4 -0 5 -0	V1 0.1856695 0.1698416 0.1655010 0.1810848 0.1655010	×mn) ≈ xmn) × 0.1140680 - 0.9475450 - 0.6869339 0.1327860 - 0.6869339	U3 0.42420481 0.09416006 0.19898838 0.43814525 0.19898838	V4 -0.08014229 0.18175889 1.58933469 -0.06470997 1.58933469) ··. s_{rr} / $r \times r$) -0.2812047) -0.0457422) -0.0430631 / -0.2332995) -0.0430631	C 75 2 27 -0 14 -0 58 2 14 -0	: · · . <i>v_{r1}</i> <i>r × n</i> onduct .0482152 .8454400 .3930182 .0505967 .3930182	v _{rn}) SVD

Decomposed Values

Bayesian Independent Random Noise Model

Designation ~
$$SVD_{MCA_{V1}}$$
, $SVD_{MCA_{V2}}$, $SVD_{MCA_{V3}}$,..., $SVD_{MCA_{V50}}$

Objective 3: Evaluate the ability of SVDs to Predict Wetland/Upland Association (cont'd)

Available Water Capacity (AWC)

Steps

- 1. Rasterize SSURGO MUKEY for the area of interest (AOI).
- Submit a data SQL query to the NRCS Soil Data Access server (SDA); requesting horizon-level available water capacity data for the AOI.
- 3. Aggregate data by profiling total water storage by soil horizon.
- 4. Calculate the average total water storage within each SMU (weighted by component percentage).
- 5. Join results to the MUKEY raster.
- 6. Verify response with a BIRN Model

Topographic Indices (TPI & CTI)

Topographic Position Index (TPI)

- 1. Often used to classify landscape morphologies (Mountains Vs. canyons Vs. plains, etc...)
- 2. Type of "ruggedness" or "roughness" index
- 3. Difference between target cell and mean of its eight neighbors

Compound Topographic Index (CTI)

- 1. "Wetness Index"
- 2. Higher values represent "wetter" areas
- 3. In(a/tan B), a = Contributing area; B = Slope

Both evaluated for co-linearity and applied to a BIRN Model prior to being considered for model inclusion.

Top: TPI Raster Bottom: CTI Raster (250m resolution)

Spatial Correlation The Neglected Variable

Non-parametric inference on Moran's I (Monte-Carlo Simulation)

Model "Prediction" Based on Spatial Structure Alone Legend Values are Relative to Mean Density of Wetlands (250m resolution)

Model Construction

Model Construction

The integrals cannot be solved analytically, so the integrated nested Laplace approximation (INLA) method is used. INLA provides a fast alternative to Markov Chain Monte Carlo simulation for models that have a latent Gaussian structure [Rue et al., 2009].

Model Selection

More than a dozen models were fitted:

- 1. Deviance Information Criterion (DIC)
 - Similar to the Akaike Information Criterion (AIC), but adapted to Bayesian hierarchical models.
- 2. Watanabe-Akaike Information Criteria (WAIC)
 - A more contemporary version of the DIC.
- 3. Log Conditional Predictive Ordinances (LCPO)
 - "Leave one out" Cross-validation Method.
- 4. Brier Score (BS)
 - Similar to a Root Mean Squared Error (RMSE) comparing results to original LC/LU Wetlands.

The "Final" Model

 $W_s | \mu_s$, $n \sim \text{NegBin}(\mu_s, n)$

 $\mu_s = \exp(v_s \cdot \operatorname{area}_s)$

 $v_{s} = \beta_{0} + \beta_{PCA_{V2}} \cdot PCA_{V2} + \beta_{PCA_{V3}} \cdot PCA_{V3} + \beta_{MCA_{V2}} \cdot MCA_{V2} + \beta_{AWC} \cdot AWC + \beta_{TPI} \cdot TPI + \beta_{CTI} \cdot CTI + u_{s}$

The random effect (u_s) follows a Besag formulation [Besag, 1975]:

$$u_i \setminus u_j$$
, $i \neq j$, $\tau \sim N\left(\frac{1}{m_i}\sum_{i \sim j} u_j$, $\frac{1}{m_i}\tau\right)$

Where **N** is the normal distribution with mean $\frac{1}{m_i} * \sum_{i \sim j} u_j$ and variance $\frac{1}{m_i} * \tau$ where m_i is the number of neighboring cells of cell *i* and τ is the precision; *i* $\sim j$ indicates cells *i* and *j* are neighbors.

Besag, J. (1975), Statistical analysis of non-lattice data, Journal of the Royal Statistical Society: Series D (The Statistician), 24, 179-195.

Results

Model Summary

Results Summary

THeat	Destaution Manage	Credible Interval					
chect	Posterior Mean	0.025 Quant	0.975 Quant				
PCAV2	-0.5171	-0.6278	-0.5164				
PCAV3	0.2722	0.1863	0.2716				
MCAV2	1.3972	1.2579	1.396				
AWC	0.0787	0.0653	0.0786				
TPI	-0.1128	-0.1479	-0.1127				
CTI	0.0722	0.0186	0.0721				

Brier Score (BS) 0.0723

Posterior Distributions

Comparison to the National Wetlands Inventory (NWI)

NWI Wetland

~40mn Run Time

~30% More Wetland Area (@0.50 Probability)

NWI Wetland

~30% More Wetland Area (@0.50 Probability)

NWI Wetland

Summary and Closing

Funded by EPA Cost-Share Grant Wetland Program Development Grant 00D14313

Peer Advisory Group Members

Tim Rach, FDEP Andy May, FDEP Dr. Daniel Irick, FDEP Dr. Tingting Zhao, FSU Dr. James Elsner, FSU Dr. Daniel McLaughlin, UF Dr. Thomas Hoctor, UF Jonathan Oetting, FNAI Amy Knight, FNAI Kathleen Okeife, FWC Mark Barrett, FWC

Contact Information

Questions?

John Humphreys

Phone: (850) 245-8487 Email: <u>John.humphreys@dep.state.fl.us</u>

AmirSasan Mahjoor

Phone: (850) 245-8817 Email: <u>AmirSassan.Mahjoor@dep.state.fl.us</u>