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Outline

• Current results from Hoh River Watershed
• Data collection
• Modeling
• Wetland carbon stocks

• Planned future work
• Additional WA study areas
• Disturbance evaluation
• Upscaling to state/region
• Soil carbon quality



Inland Wetland Carbon
“Teal Carbon”

Nahlik and Fennessey 2016

Wetlands store 20-30% of global soil carbon
despite occupying only 5-8% of the land 

surface

Friedlingstein et al., 2022; Campbell et al., 2022; Lal, 2008; Poulter et al., 2022

Wetlands
300-700 GtC

How much wetland 
extent is there and how 

much C does it hold?



Wetland Intrinsic Potential (WIP) Tool
Wetland to Upland Probability
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How can WIP be 
used to model soil 

carbon stocks? 
“Cryptic Carbon”

WIP is 
flexible and 

inclusive



Soil pit characterization
- 1m Depth or more

- Soil survey (horizons, color, texture)

- Vegetation survey (hydrophytic)

- Top level HGM and Cowardin classification

- Bulk Density and Total Carbon sampling

Thanks to: 
Claire Johnson, Hazel 

Sanders, Abby Nesper, 
Thomas Kakatsakis

WetlandUpland36 Soil Pits in 22 Workdays 

Fieldwork for Cryptic Carbon 
Sampling

5km

WetlandUpland

Sample Point Distribution



Upland and Wetland Soils

WIP = 7%

WIP = 3%

WIP = 62%

WIP = 87%



WIP = 11%

WIP = 21% WIP = 32%

WIP = 27%

WIP = 47%

Mesic soils
10%<WIP<50%



Soil pit characterization
- 1m Depth or more

- Soil survey (horizons, color, texture)

- Vegetation survey (hydrophytic)

- Top level HGM and Cowardin classification

- Bulk Density and Total Carbon sampling

Thanks to: 
Claire Johnson, Hazel 

Sanders, Abby Nesper, 
Thomas Kakatsakis

WetlandUpland36 Soil Pits in 22 Workdays 

Fieldwork for Cryptic Carbon 
Sampling
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Wetland and Land Type 
Groups Soil Carbon Stocks

Riverine wetlands, on 
floodplains and river 
terraces had lower C 
stocks

WA DNR Geologic Age 
Differentiates Wetland Types

Riverine

Palustrine/Mesic

Geology Age

Miocene/Eocene

Quaternary Riverine

Quaternary Alluvium

Quaternary Clastic

Palustrine/Mesic

Riverine



Continuous Landscape Prediction of 
Soil Carbon Stocks

R2=0.63

Predictor t Value P

WIP Score 11.085 <0.005

Surficial Geology 3.092 <0.005
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WIP improves soil carbon prediction 
with landscape classification type:

1. Can we build additional landscape classifiers?
2. Can we predict HGM wetland type? 



Total 
Landscape

Surface Area (ha) 68,135

Total Soil Carbon 
(TgC) 9.6

Average Soil 
Carbon Density 

(MgC ha-1)
140.4

WIP Wetlands

6,114 (9%)

1.8 (19.2%)

296.8

Cryptic Carbon 
Mapping Results

WIP 
Included With 
NWI Wetlands

9,803 (+181%)

2.3 (+246%)

238.6 (+70%) 

WetlandUpland

0 700

Soil Carbon MgC ha-1

R Package: Rayshader

NWI Wetlands

5,401 (8%)

1.0 (9.8%)

178.2



Palustrine

Riverine



Additional Study 
Areas:

MashelHoh Colville



2020 – 2021 Soil Carbon Sampling 
96 soil pit locations, stratified across wetland probability

36*

MashelHoh Colville



Fixed Effects:
• Wetland Probability
Random Effect:
• Surficial Geology

Fixed Effects
• sqrt(Depth to Water)
• sqrt(Specific Catchment Area)
• Wetland Probability
• Topographic Wetness Index

Fixed Effects
• Slope/Gradient
• Wetland Probability
• sqrt(Specific Catchment Area)
• Topographic Wetness Index

MashelHoh Colville

Different geology & climate:
Different SOC modeling 

approaches

Soil Carbon Modeling 



MashelHoh Colville

R2 = 0.63 R2 = 0.28 R2 = 0.47

Non-Riverine Riverine

WIP with additional stratifying factors is a 
predictor for soil carbon:

- Geology/Landform
- Biome/Forest Type

Wetlands
Hydrogeomorphic Classification



Future Analysis: 
Climate and 
Disturbance 

Vulnerability

Disturbance

Temperature
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Disturbance

Temperature

Precipitation
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Precipitation

Climate Vulnerability
Temperature

*** Not actual data 

Projected Climate Scenarios
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Disturbance Vulnerability

Hansen et al., 2013 Forest Gain/Loss Annually
Since 2000

Remote Sensing Land Cover Change

Disturbance

Temperature

Precipitation
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Disturbance Vulnerability
Justin Braaten & Meghan Halabisky

Landtrendr – Landsat Archive, change characteristics

Longer record (50yrs)
Change Intensity
Trend detection



Future Plans: Upscaling with open data 

McNicol et al., 2019

National Wetland Condition Assessment



Future Plans: Soil Carbon Quality  
Heen Latinee Experimental Forest

Juneau, AK Density Fractionation
Heavy Mineral-Associated 
(Stable)

Light Free Particulate
(Vulnerable)



Conclusions

• Remote sensing approaches help identify wetland areas 
• Screening areas to add to current inventories (NWI)

• Wetland probability can help address hidden wetland extent 
and underestimates of wetland soil carbon stock

• Future efforts benefits from additional field validation data  for 
remote sensing products
• Disturbance detection

Working to improve wetland representation 
in soil carbon stocks
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Mesic

21,155 (31.0%)

3.8 (38.9%)

175.7

Upland

40,866 
(60.0%)

4.1 (41.9%)

100.6
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• How much landscape is misclassified as not-wetland at greater 
extents and larger scales?

• Are these cryptic wetlands and carbon more vulnerable to land use 
change and other disturbance? 

• Across the upland to wetland gradient how stable is the soil carbon 
stock? Are mesic areas more stable but hold less soil carbon?

Further Questions



SoilGrids 250m*30cm depth Hengl et al., 2017
Soil Carbon Estimates at the 

Management Scale




