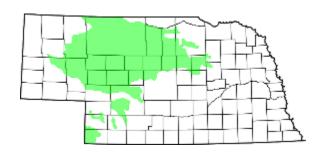
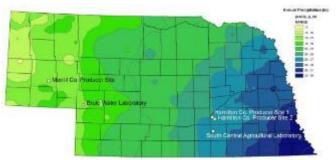
Macroinvertebrate Communities in Lake and Wetlands in the Nebraska Sandhills



Andy Dzialowski, Craig Davis, Bill Mausbach, Jason Glover
Oklahoma State University

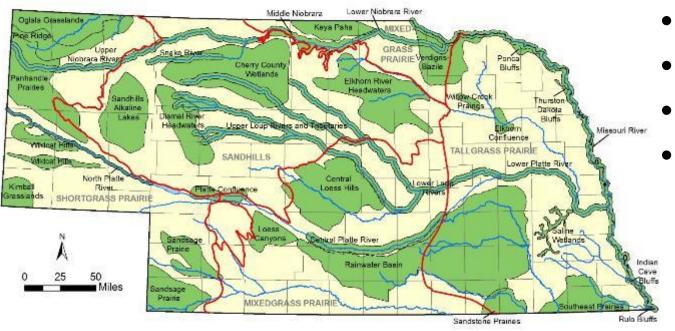
Andy.Dzialowski@okstate.edu

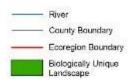
Nebraska Sandhills


 Largest grass-stabilized dune system in the western hemisphere

 ~4000 km² of groundwater-fed wetland habitat and thousands of permanent and semipermanent aquatic habitats

 Transitions from semi-arid climate in the west to mesic climate in the east


• Importance ecological resource



Biologically Unique Landscapes

Nebraska Natural Legacy Project: Biologically Unique Landscapes

- Sandhills Aklaline Lakes
- Cherry County Wetlands
- Dismal River Headwaters
- Elkhorn River Headwaters

Overall Project Objectives

 Characterize the ecological condition of Sandhill wetlands

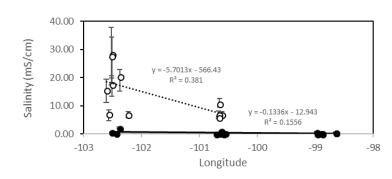
 Determine the effects of invasive carp in sandhill wetlands and lakes

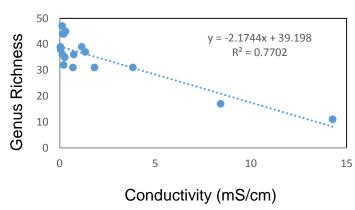
Focus on macroinvertebrates

Macroinvertebrates

Often used in bioassessment studies

Respond to environmental change

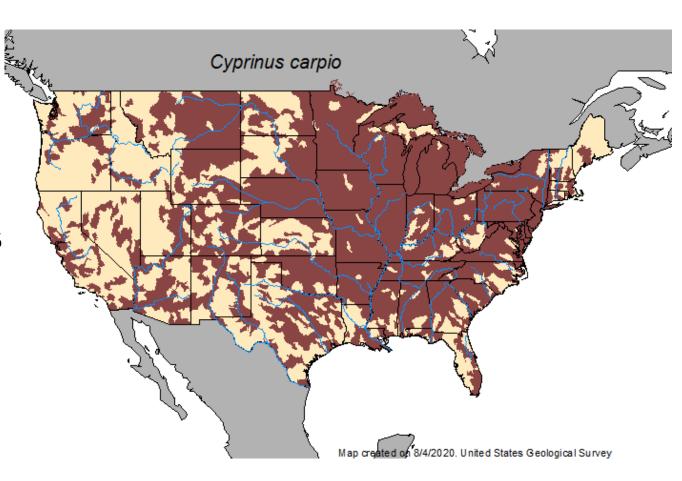

Influence ecosystem function



Provide important nutritional resources for waterbirds

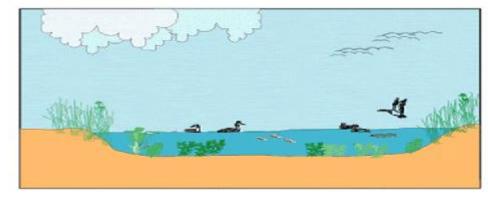
Project Objectives

• Characterize the ecological condition of Sandhill wetlands

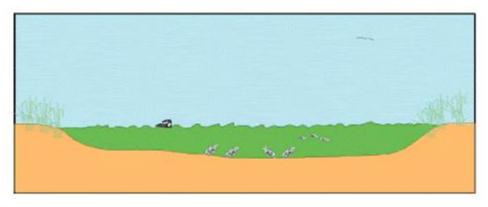

Overall Project Objectives

 Determine the effects of invasive carp in sandhill wetlands and lakes

Common Carp Cyprinus carpio

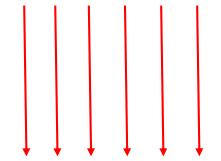

- Native to eastern Europe and Asia
- One of the most widely distributed fish species in the world
- Introduced in 1877 by U.S. Fis Commission as food source
- Fast growth, maturation, and reproduction
- Ecosystem engineers

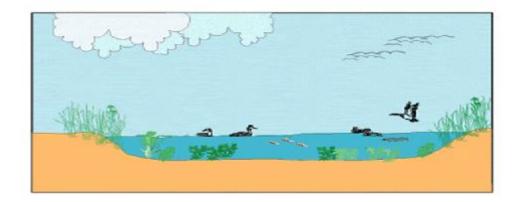
Impact of Carp on Shallow Lakes


Carp have the potential to alter the stable state of aquatic systems:

1. Clear water state:

2. Turbid state:

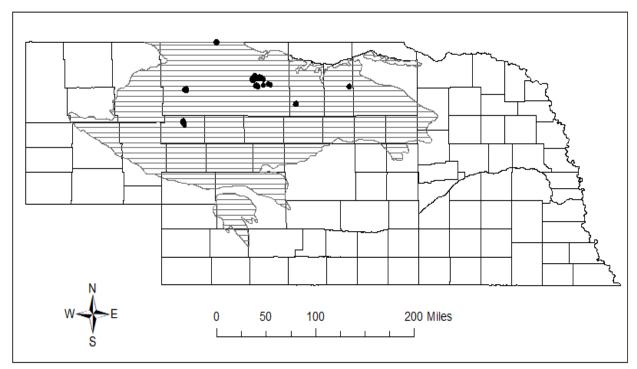



Impact of Carp on Shallow Lakes

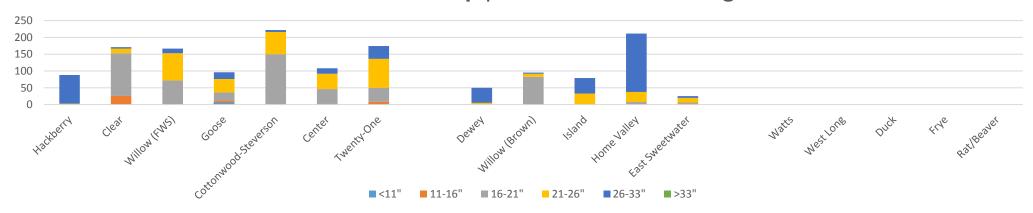
Carp have the potential to alter the stable state of aquatic systems:

1. Clear water state:

2. Turbid state:



- Clear
- Dense vegetation
- Low nutrients and chl
- High macroinvertebrate richness and abundances


- Turbid
- Sparse vegetation
- High nutrients and chl
- Low macroinvertebrate richness and abundances

Sample Lakes

10 Lakes = No Carp
3 Lake - "Mid" Carp
8 Lakes - "High" Carp
*Sites selected by Nebraska
Game and Parks (NGP)

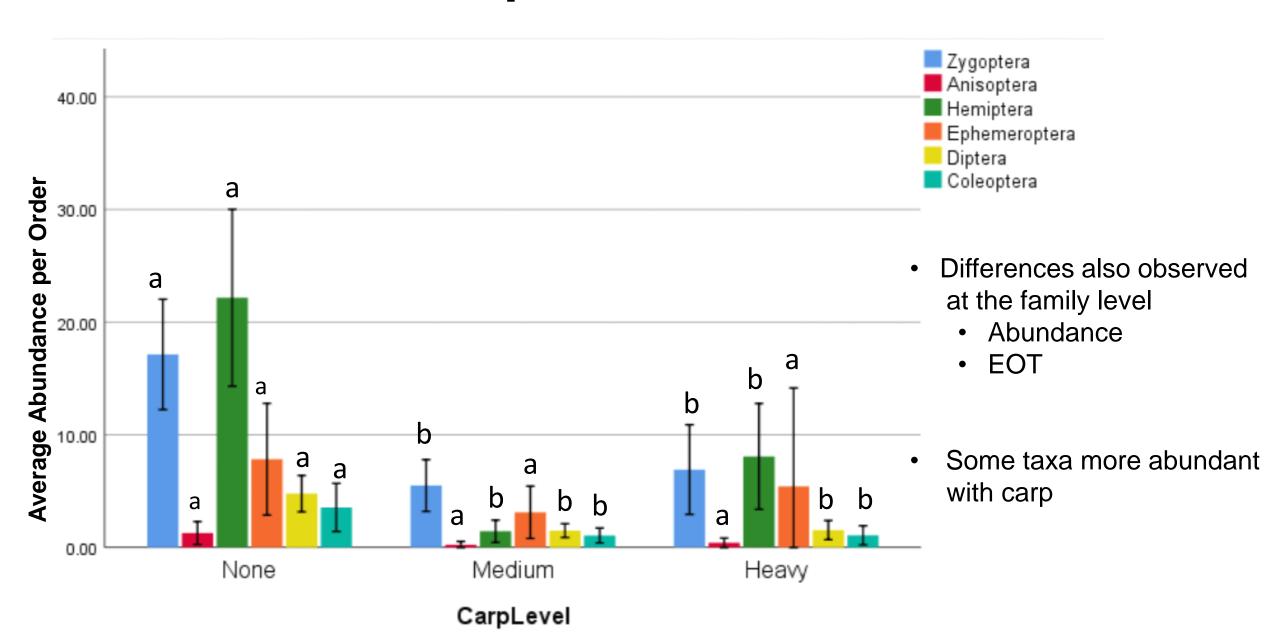
Common Carp per Hour Electrofishing

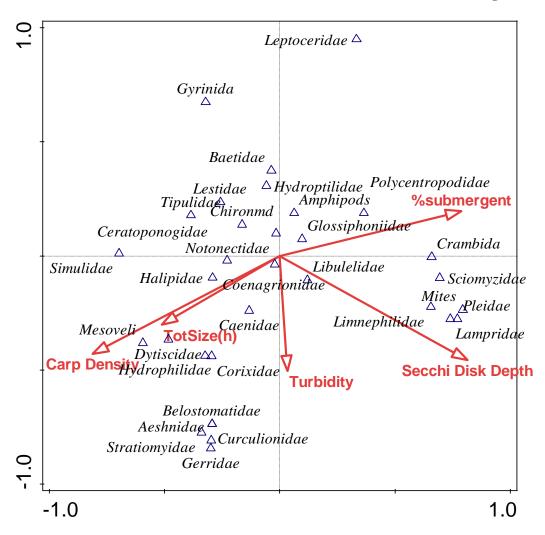
Data Collection

- Macroinvertebrates
 - Littoral
 - Benthic

- Vegetation
- Water quality
 - Turbidity
 - Salinity
 - Phosphorus
 - Chlorophyll a

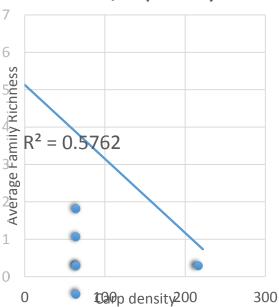
- >14,500 Macroinvertebrates collected
- >10,000 Littoral
- >4,000 Benthic
- 44 Families
- 42 littoral
- 22 benthic





Effects of Carp on Macorinvertebrates

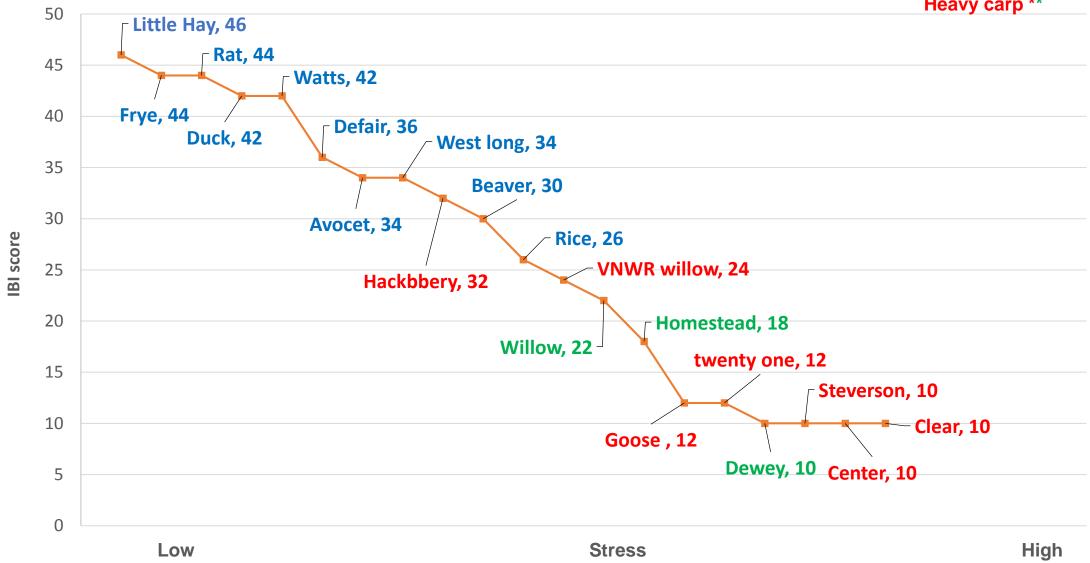
Effects of Carp on Macorinvertebrate Community Structure



- Carp Density
- Secchi Disk
- Submerged vegetation
- Total Size
- Turbidity

Index of Biological Integrity

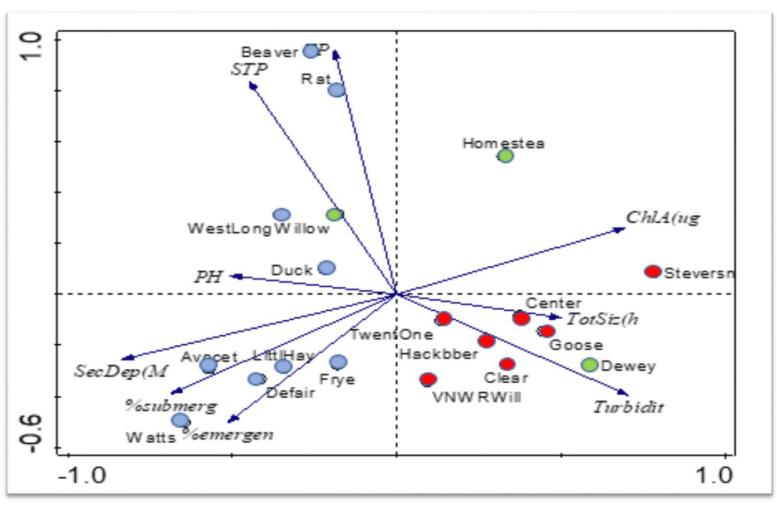
- Family Richness
- Total number of taxa
- Ginni Simpson Index
- Hilsenhoff biotic index (HBI)
- Predator richness
- Shannon diversity index
- Shreddar richness
- Chironomidae abundance
- % Amphipoda
- % baetidae
- % corixidae
- % gatherer
- % Odonata
- Total Odonata
- Total Ephemeroptera
- %Oligochaeta
- % Trichoptera
- % 2 dominant taxa
- EOT richness
- % EOT
- Gatherer Richness

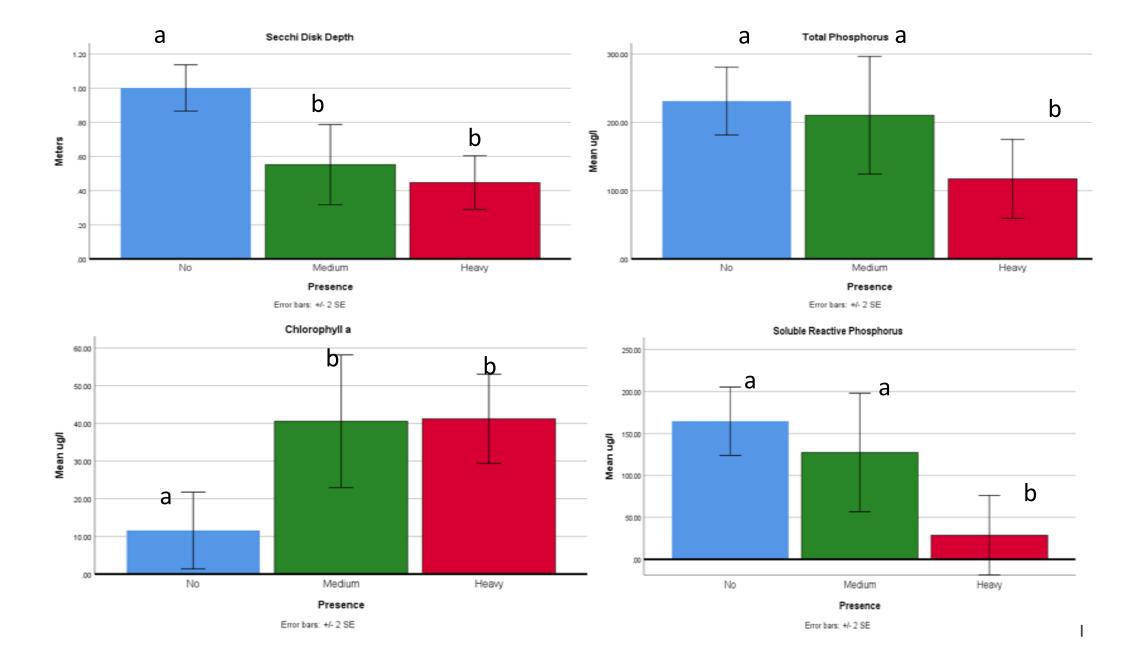


	# of familie	s corixida	% filter	6 gathere	% pred	%2 dom	%eot	6shredda	ot richnes	her richn	ni simpsc	hbi	total tax	lator rich	shannon	ddar richi	al odona
# of families	1																
% corixidae	-0.3176	1															
% filter	0.0899	-0.3156	1														
% gatherer	0.13864	-0.3102	0.96821	1													
% pred	0.69324	-0.169	-0.0147	0.03227	1												
%2 dom	0.12647	-0.3339	0.0045	-0.0496	0.07112	1											
%eot	0.37153	-0.6551	0.57376	0.54795	0.03948	0.16447	1										
%shreddar	-0.1313	0.80579	-0.4176	-0.4021	-0.1404	0.08763	-0.6105	1									
eot richness	0.77319	-0.4781	0.43648	0.45196	0.29685	0.16171	0.74354	-0.3109	1								
gather richness	0.66578	-0.4231	0.45198	0.50731	0.24253	0.00653	0.70877	-0.3052	0.88042	1							
gini simpson	0.81159	-0.2811	-0.0475	-0.0679	0.56876	0.31257	0.35684	-0.0316	0.66905	0.50451	1						
hbi	0.36721	-0.3655	-0.4531	-0.4899	0.28447	0.73686	0.02669	0.03605	0.19344	0.02567	0.52626	1					
N total taxa	0.65951	-0.171	0.24548	0.33073	0.61455	0.07686	0.27042	-0.0468	0.45858	0.48996	0.42239	0.1483	1				
predator richnes	0.92114	-0.1334	0.045	0.11285	0.8008	0.01241	0.17824	-0.0822	0.58843	0.47171	0.65621	0.22875	0.61796	1			
shannon	0.89715	-0.3198	0.14074	0.14955	0.69918	0.30523	0.44793	-0.0783	0.75787	0.67295	0.89329	0.42502	0.53832	0.79068	1		
shreddar richnes	s 0.79974	-0.2671	0.13259	0.18371	0.53758	-0.0024	0.34828	0.00851	0.70213	0.65001	0.72482	0.24605	0.68278	0.63826	0.76521	1	
total odonata	0.69804	-0.209	-0.0141	0.0848	0.6545	-0.0221	0.28458	-0.1163	0.48563	0.47321	0.55618	0.19218	0.54141	0.73442	0.62496	0.65172	1
correlation =>.7																	

Littoral				Benthic					
	Scoring	:			Scoring				
Metric	Criteria	•		Metric	Criteria	Criteria			
Abundance	5	3	1	Abundance	5	3	1		
1. # of families	>10.5	7.5-10.5	0-7.5	1. # of families	>4.5	2.5-4.5	<2.5		
2.5impson's index	>65%	.5365	<.538	2. Simpson's index	>.4	.24	<.2		
3. Total taxa N 4. Shannon	>193	103-193	13.4-103	3. Total Taxa N 4. Shannon diversity	>75	39-75	<39		
diversity index	>1.5	1.25-1.5	<1.25	Index	>.83	.4583	<.45		
Taxon composition				Taxon composition					
5. % Corixidae	<10%	10%-20%	>20%	5. % EOT 6. Trichoptera	>34%	17%-34%	<17%		
6. % EOT	>50%	31%-50%	<31%	abundance*	>17.8	7.8-17.8	<1.3		
Sensitivity 7. %2 Dominant				Sensitivity					
laxa 8. Hilsenhott	≪e5396	6:396-7496	>79%	7. %2 dominant taxa 8. Hilsenhoff blotic index	<.8096 :	HO%-90%	>90%		
Biotic index (HBI)	<5.7	5.7-6.6	>6.6	(11131)	<6.34	6.34-7.17	>7.17		
Functional feeding group				Functional feeding group 9. Chironomidae					
9. % Gatherer	>38%	20%-38%	<20%	abundance"	>50	26-50	<26		
10. % Predator	>34%	24%-34%	<24%	10. % Shreddar	>19%	2%-19%	<962		
11. % shreddar	=-20%	10% 20%	< 10%						

Benthic Index of Biological Integrity




Littoral Index of Biological Integrity No carp * Mid carp ** Heavy carp **

Effects of Carp on Water Quality

- Heavy Carp
 - Turbidity
 - chl a 1
- No Carp
 - Vegetation
 - Secchi Dish
 - Phosphorus 1

Effects of Carp on Vegetation

Heavy Carp

No Carp

Conclusions

- Invasive carp have the potential to shift the stable state of shallow water ecosystems in the Sandhills
 - Macroinvertebrates
 - Water Quality
 - Vegetation
- IBI can be used to assess success of future carp renovations
- Carp will continue to disperse through the region

Acknowledgements

- US Environmental Protection Agency
- Nebraska Game and Parks Commission
- Valentine and Crescent Lake NW Reserves
- Association of State Wetland Managers

