Modeling and Ranking Wetland Functions, Condition, and Land Acquisition Priority

- Building the Model
- Examples of Metrics
- Applications

en

Presented by Elizabeth Byers, Senior Wetland Scientist WVDEP Water Quality Standards & Assessment Section

Building the Model

Goal: robust, repeatable, rapid assessment for regulation, status & trends, restoration, and conservation

Building the Model

Ecological integrity & wildlife habitat: 50%

Water quality: sediment, nutrients, pollutants: 25%

Flood attenuation, baseflow: 25%

3 metric groupings

Essential Data: Wetland Maps

- Most of West Virginia's wetland mapping is more than 40 years old.
- Created calibration set of 2000 field-sampled wetlands distributed across ecoregions to develop metrics
- With Q2 LiDAR & hi-res leaf-off aerial photos, maps now being updated

...we looked only at tested, validated methods & metrics

WVWRAM: 75 metrics

Land Acquisition Score

dep

	Intrinsic Potential	Landscape Opportunity	Value to Society
Water Quality	vegetation, soil, hydrology	50 m buffer, contributing watershed	public use, planning
Flood Attenuation	vegetation, soil, hydrology	50 m buffer, contributing watershed	economic risk
Habitat/ Ecological Integrity	vegetation, soil, hydrology	50/300/1000 m buffer, perimeter, contrib. watershed	investment, public use, access

Regulatory Function Score

Condition Score

Water Quality

Intrinsic potential to provide function

- Vegetation cover and persistence
- Surface depressions
- Surface water outflow
- Organic soils
- Seasonal ponding, slope, wetland/upland interface
- Headwater location

Landscape opportunity (function score only)

- Discharges to the wetland
- Land use disturbance, 50 m buffer & contributing watershed
- Roads and railroads
- Impaired waters, algal blooms, powerboat use

Flood Attenuation & baseflow

Intrinsic potential to provide function

- Vegetation cover and structure
- Runoff and storage
- Surface water outflow
- Median percent slope
- Headwater location
- Connectivity to historic floodplain

Landscape opportunity (function score only)

Overland flow delivered to wetland

Habitat & Ecological Integrity

Intrinsic potential to provide function

- Vegetation (structure and floristic quality)
- Hydrology (intact regime, floodplain connectivity)
- Soils
- Structural patches

Landscape opportunity

- Buffer and landscape integrity
- Landscape-level hydrologic connectivity
- Landscape-level ecological connectivity

Special Conservation Concern override

Up to 100% of score (applies to 2% of wetlands)

Let's deter impacts to high-functioning wetlands!

100

in History

Repeatability

What is the assessment area? "Wetland Units" are contiguous, hydrologically connected wetlands

PUBHI

PEMD

FUR

200 0

1000

om History

0.ml

Tiner attributes

PEMIS

REMBE

FUBH

Landscape position: lotic Landform: floodplain Water flow path: outflow Water body type: low gradient perennial stream

PUBHI

Print Hay

charlesto

Map Scale: 1:4514 Lat: 39.3000, Lng: -77.9054

Source data: 62 statewide GIS datasets

- Biodiversity
- Ecosystems
- Elevation
- Geology
- Hydrology
- Imagery

- Infrastructure
- Jurisdiction
- Landcover
- Landform
- Soils
- Stressors

Watershed Biodiversity Ranks

Metric Examples

Site Biodiversity Rank

Why?

 Rare species and habitats are important conservation targets

How?

Select wetlands where:

- Rare species and habitats are documented in the Natural Heritage Database
- May have local, state, or global biodiversity significance

Relationship to field assessment

 May be modified if old growth, mature forested swamp, large bog/fen, or summit sinkhole wetland is observed

Floristic Quality

Why?

 Best proxy for wetland condition; integrates many factors

How?

Select wetlands where:

- Landscape integrity is high, especially in 50 m buffer
- Vegetation is forested (except on marl or in beaver complexes)
- Extra points for histosol or karst

Relationship to field assessment

Overwritten

Connection to the River Continuum

Why?

• Flood interception, habitat value

Relationship to field assessment

Overwritten

How?

Select all wetlands where:

- >50% (>10%) of wetland is in the FEMA 100-yr or Active River Area floodplain
- Complexity of the wetland/stream interface is >3.4 (>1). Ditches and drains are excluded.

Organic Soils

Why?

Denitrification, nutrient & pollution capture, habitat value

How?

Select wetlands that intersect with:

- SSURGO soils with a surface O horizon or with organic matter >30% in the top 8 cm (3 in) of the soil profile OR
- WV vegetation plots containing peat, mucky peat, muck, or mucky modified mineral soil in the top 8 cm (3 in) of the soil profile OR
- Mapped WV peatlands OR
- NWI attribute soil modifier "g" for histosol

Relationship to field assessment

• Overwritten

Microtopography

Why?

• Sediment capture, chemical activity, habitat value

How?

Horizontal Interspersion (dimensionless) =
<u>summed perimeters of NWI communities</u>
sqrt (Wetland Unit area)

combined with...

 Irregularity of upland edge (dimensionless) = summed perimeter of Wetland Unit not bordering open water sqrt (Wetland Unit area)

Relationship to field assessment

Overwritten

Cep

Watershed Runoff

Why?

 Does the wetland have an opportunity to capture sediment and slow overland flow?

How?

- Combine median percent slope with
- Land types that produce runoff
 - NLCD classes: developed, cultivated, or barren
 - SSURGO soils with high runoff/low infiltration
 - Timber harvests within the last 5 years

Relationship to field assessment

GIS is final score

GIS plus rapid field assessment: the best of landscape-level assessment + metrics that must be obtained in the field

= Field-verified WVWRAM score

Comparison of Preliminary (GIS) and Final WVWRAM Scores for 210 sites

Preliminary GIS Score

GIS Tool: https://mapwv.gov/wetlands/

WVDEP GIS Viewer

Wetland function, condition, and land acquisition scores for all mapped wetlands

Timeline

2015: Begin development

2017: Field-testing & training with stakeholders

2020: public notice & WVDEP approval

2021: Peer review & Corps approval; begin status & trends monitoring

Jan 2024: Clean Water Act adoption

Applications

Good wetland maps & rankings promote proactive planning

Reduce impacts to wetlands by the regulated community

 Predict mitigation costs of different sites or corridors

Statewide Planning

Key breeding bird

wetlands (top 2%)

High-functioning wetlands (top 10%)

High-biodiversity wetlands (top 2%)

Intact 300m wildlife buffer (6% of wetlands)

Ce

Monitor Status & Trends

- Identify potential reference wetlands
- Combine with field assessments for probabilistic monitoring statewide

Incentivise Best Restoration Practices

- Compare potential mitigation credits at different sites prior to land acquisition; find the good neighborhoods
- Restoration Manual guides projects, showing explicit point gains for restoration actions (field assessment required)

Viability

Potentially restorable sites i.e., historic wetlands

Viability Inputs:

- SSURGO soils (hydric, poor drainage, ponding)
- Floodplain (FEMA & TNC)
- Compound Topographic Index (slope & flow accumulation)
- Exclude impervious surfaces

Conservation Planning

- WVDNR land acquisition decisions
- Outdoor Heritage Conservation Fund
- Municipalities and counties
- Land trusts and conservation organizations
- Engaged citizens

Degraded marsh, Hardy County

Regulatory Function: 0.39 (low) Condition: Poor, bottom one-third in state Land acquisition: Bottom one-third in state Pin Oak Swamp, Greenbrier County Regulatory Function: 0.94 (high) Condition: Top 7% in state Land acquisition: Top 9% in state

Shepherdstown Marl Fen

Regulatory Function: 1.00 (Exemplary) Condition: Top 2% in state Land acquisition: Top 2% in state

With thanks to:

Technical Center

USD/ Natural Resources Conservation Service

For more information, type "WVWRAM" into your search engine, or contact Elizabeth.A.Byers@wv.gov