

Kickapoo Tribe in Kansas Region-7 EPA CWA Sec. 104 (b) (3) Wetland Program Development Project

Nestoria L. Wright - KEO Environmental Director

What the Kickapoo Tribe in Kansas (KTIK) Wetland Program Does

The Kickapoo Tribe Environmental Office (KEO) Wetlands Program monitors and assesses wetlands on tribal and surrounding lands.

Information obtained is used to develop and implement plans to improve the quality of these wetlands and promote the restoration of historic wetland sites.

- In 1994 the Kickapoo Tribe engaged in wetland program plan development, and an outside contractor was hired to create a Phase I plan for the Tribe.
- In 1996 another contractor (White, Martin & Associates, Inc.) prepared a Phase II Wetland Conservation Plan and completed an inventory of wetlands on tribal-owned land.
 - Approximately 123 wetlands were found to fall within tribally owned properties.

Problem Definition/Background

- Nearly 73% (4890 acres) of the KTIK tribal land is used for agricultural purposes, making agriculture the most important factor to be considered while making decisions regarding the watershed.
- The KTIK is concerned about using pesticides, herbicides, insecticides, and nutrient runoff from fertilizer application because the primary source of drinking water is the Delaware River.
 - Wetlands can be valuable tools in helping to minimize the impact of agriculture on the KTIK drinking water, but we need first to understand their current conditions and functions.

- Of the 123 wetlands found, most were determined to be farm/stock ponds or waste treatment lagoons.
- However, there were approximately 35 emergent wetlands located, of which only nine were considered to have minimal impacts from human development/use.
- In addition to the emergent wetlands, there were also approximately 24 forested wetland areas.
 - These areas fared better, as only half of them were impacted by human development.
 - Lastly, there were two shrub-scrub wetlands found on the reservation's eastern boundary.

Since the initial survey of wetlands on the Reservation in 1996, very little has been done to determine the wetlands' condition or function.

The KEO has since been awarded grant funding by the US Environmental Protection Agency under the Wetland Development Program Grant to develop the KEO's environmental capacity, conduct assessments, and monitor the Tribe's wetland resources.

- Mapping the wetlands on the reservation is the first step in achieving no net loss of wetland quality and quantity.
- Information will also assist the KEO's other water quality programs. It will enhance the Tribe's ability to make sound decisions to protect its water resources and overall ecosystem health on the reservation.

The KEO recognizes the importance of wetlands in reducing pollution, maintaining properly functioning watersheds, and increasing ecosystem health.
However, a lack of up-to-date information stands between the KEO and better management practices.

History of the Wetlands Program Development Project

Knowing where wetlands are located is the critical first step to manage better the limited water resources available to the Kickapoo Tribe.
It is also unknown what condition or functions the wetlands on the Kickapoo Reservation perform.
Without this information, it would be challenging to implement restoration or protection projects, create constructed wetlands, and improve our water resources

condition.

Ready to explore the KTIK Wetland areas to get soil and vegetation samples (August 2019) In the photograph: Jessica Raley and Nestoria Wright

Jessica Raley Wetland Program Coordinator and Frank Norman

Frank Norman and KEO Staff cont...

Frank Norman and KEO Staff Conducting Kickapoo Tribal Wetland Assessment

Frank Norman and Staff Conducting Kickapoo Tribal Wetland Assessment

Frank Norman and Staff Conducting Kickapoo Tribal Wetland Assessment

The core elements that the Kickapoo Environmental Office (KEO) address with the implementation of this Wetland Program Plan are:

Monitoring and Assessment
 Wetland Restoration and Protection
 Wetland Water Quality Standards
 Wetland Regulatory

Core Element: Monitoring and Assessment

Action (ESTP CEF Objective/Action)	Activities	2020	2021	2022	2023	2024	Possible	Potential
							Partners	Funding
Monitor Wetland resources as								
specified in strategy (Obj 2, Action b)								
	Track selected monitoring sites	x	x	x	x	x	NEC	PPG, GAP,
								319, 5 star,
								NLC
	Update wetland inventory to monitor		x		x		COE, NRCS,	PPG, GAP,
	acreage and condition						HINU	319, 5 star,
								NLC
							NRCS,	PPG, GAP,
							HINU,	319, 5 star,
	Evaluate wetland function for BMP						KDWPT,	NLC
	recommendations		x	x	X	x	KFS, KWO	
							NRCS,	PPG, GAP,
	Evaluate monitoring and assessment						HINU,	319, 5 star,
	strategies to ensure they meet long term						KDWPT,	NLC
	wetland resource goals	x		x		x	KFS, KWO	
Track monitoring data in a system that								
is accessible, updated on a timely								
basis, and integrated with other state								
or tribal water quality data (Obj 2,								
Action b)								
	Integrate NWCA data with other water							PPG, GAP,
	quality data systems (e.g., state						KEO,	319, 5 star,
	watershed planning databases)	X	x	x	X	X	AWQMS	NLC

Core Element: Restoration & Protection

Action (ESTP CEF Objective/Action)	Activities	2020	2021	2022	2023	2024	Possible	Potential
							Partners	Funding
Consider watershed planning, wildlife								
habitat, and other objectives when								
selecting restoration/ protection sites								
(Obj 1, Action b)								
	Share priorities with other water quality							PPG, GAP,
	protection programs, e.g., identify riparian							319, 5 star,
	restoration projects that would reduce							NLC
	sediment and nutrient loadings to streams						KEO, region	
	and implement TMDLs	X	X	X	X	X	7 tribes	
							AWSM,	PPG, GAP,
	Identify rare, vulnerable, or important						HINU,	319, 5 star,
	wetlands and prioritize for						KDWPT,	NLC
	restoration/protection		X		X		NRCS	
Clearly and consistently define								
restoration and protection goals								
throughout state or tribal territory (Obj								
1, Action c)								
							WRAPS,	PPG, GAP,
	Develop restoration and management						ASWM, CD,	319, 5 star,
	guidance specific to wetland types and						HINU, KFS,	NLC
	location (e.g. urban vs. rural)		X		X		NRCS	
							WRAPS,	PPG, GAP,
	Establish measures of restoration success,						ASWM, CD,	319, 5 star,
	e.g., adopt functional and/or condition						HINU, KFS,	NLC
	indicators and field methods		X		X		NRCS	

Core Element: Wetland Water Quality Standards

Action (ESTP CEF	Activities	2020	2021	2022	2023	2024	Possible	Potential
Objective/Action)							Partners	Funding
Compile wetland data to use as								
reference should the Tribe decide to								
develop wetland specific water								
quality standards (Obj 2, Action a)								
	Continually search for additional							PPG, GAP, 319, 5
	sites that can be used to gather							star, NLC
	more wetland water quality data	Х	Х	X	X	Х	KEO	
	Continue to sample selected tribal						Other KEO	PPG, GAP, 319, 5
	wetlands	Х	Х	X	X	X	programs	star, NLC
	Create appropriate wetland water							PPG, GAP, 319, 5
	quality standards to better manage							star, NLC
	the Tribe's wetland resources	Х	Х	X	X	Х	KEO, KWO, KDHE	

Core Element: Wetland Regulatory

Action (ESTP CEF		2020	2021	2022	2023	2024	Possible	Potential
Objective/Action)	Activities						Partners	Funding
Develop definitions and								
jurisdictional scope in case the Tribe								
decides to develop wetland specific								
regulatory program (Obj 1, Action a)								
	Develop a working definition of what the Tribe considers a wetland	x					KDHE, KWO,	PPG, GAP, 319, 5
	Develop definitions involving Tribal waters	x					Other KTIK programs, region 7 tribes	PPG, GAP, 319, 5 star, NLC
Perform public education and outreach about wetland protection, regulated waters and activities, and authorization process (Obj 3, Action e)								
	Distribute brochures, flyers etc. at community events	x	x	x	x	x	Local community	PPG, GAP, 319, 5 star, NLC
	Present at local schools or community events on the importance and functions of wetlands	x	x	x	x	x	KNS, Local schools	PPG, GAP, 319, 5 star, NLC
	Utilize the Kickapoo website to share information on wetlands and projects	x	x	x	x	x	ктік	PPG, GAP, 319, 5 star, NLC

Objectives of the Wetlands Program Development Project

The overall goal of the 2018-2019 Wetlands Program Development Project is:

Conducting assessment and evaluation of the overall wetland utility of the eight wetlands within the Kickapoo Tribe's boundaries that are still relatively unaltered by human activity - as well as the reference site, Muscotah Marsh.

Conducting and attending training on applying the National Wetland Condition Assessment (NWCA) methods to complete remaining assessments. Acquiring a deeper understanding of the local wetland health and function.

The wetlands program has collected the following data:

- Location, wetland size, type of water body, hydrology, soils,
- Land use, impacts on wetland,
- Inventory of noxious and invasive weeds, cultural plants, wetland plants,
- Potential wetland functions and values, fluctuations in groundwater levels, water quality parameters

NWCA Results

Water analytical results: Site 104 -1 Lab ID 1220355 Date Collected: 8/13/2019 Pesticides method: EPA 8080

Aldrin

Chlordane

p,p'-DDD

P,P'-DDE

p,p'-DDT

Dieldrin

DCPA (Dacthal)

Chemicals Tested

	100 B 100 0
Parameters	
Methoxychlor	
PCB-1016	
PCB-1221	
PCB-1232	
PCB-1242	
PCB-1248	
PCB-1254	
PCB-1260	
Toxaphene	

2	Endosulfan I
	Endosulfan II
10	Endosulfan Sulfate
4	Endrin
2	Alpha-BHC
	Beta-BHC
	Delta-BHC
0	Gamma BHC (Lindane)
-	Heptachlor
2	Heptachlor Epoxide
	Hexachlorobenzene

Hexachlorocyclopentadiene

ALL RESULTS ARE BELOW RDL w/ 1 DF

Water Analytical Results

Site 104 -1 Lab ID 1220355 Date Collected: 8/13/2019 Pesticides method: EPA 8080

Pesticides above RDL:

- Acetochlor = 1.459 ug/L.
- Deisopropyl Atrazine = 0.627 ug/L.
- Dual (Metolachlor) = 1.254 ug/L.

*Reporting limit at Kansas Health and Env. Labs is 0.1 ug/L

Sample ID: 104 -2 Lab ID 1223117 Date Collected: 8/13/2019

Parameters	Results	RDL	DF	Prep
Total Organic Carbon	13 mg/L	.50	1	SM 5310-C

or 1.3% OM

Site 104 - 4 Lab ID 1223101 Date Collected: 8/13/2019

Parameters	Results	RDL	DF	Prep	Analyzed
Ammonia	<.10 mg/L	.10	1	EPA 350.1	8/29/2019
Total Kjeldahl Nitrogen	.89 mg/L	.20	1	EPA 351.1	8/21/2019
Total Phosphorus	.84 mg/L	.20	1	EPA 365.1	8/30/2019

Site 104 - 5 Lab ID 1223112 Date Collected: 8/13/2019

Parameters	Results	RDL	DF	Prep	
Turbidity	5.6 NTU	0.15	1	EPA 180.1	
					0

Ion Chromatography

Parameters	Results	RDL	DF	Prep
Nitrate (measured as N)	<.10 mg/L	.10	5	EPA 300
Chloride	2.0 mg/L	1.0	5	EPA 300
Nitrite (measured as N)	<0.050 mg/L	0.050	5	EPA 300
Sulfate	10mg/L	0.50	5	EPA 300

Chlorophyll a results: Site NWCA19-104 Sample # 999001

Parameters	Sample size	Results
Chlorophyll-a	250 mL	4.96 ug/L

Floristic Quality Assessment (FQA)

Site ID	Mean c-value	FQAI
101	2.08	12.50
103	1.20	7.10
104	1.79	11.57
105	1.86	9.83
106	2.82	20.16
107	1.34	7.24
108	0.90	2.85
109W	2.40	16.60
Muscotah	3.83	20.61

Floristic Quality Assessment (FQA)

The FQA analyzes ecological value of wetland in relation to the plant species composition, showing the overall vegetation quality of the location.

o c-value is the coefficient of conservation

- The c-value ranges from 0 100
- 1-19 value shows low vegetation quality
- o 20-35 value shows high vegetation quality
- \circ >35 value shows natural area quality
- The probability of plant occurrence based on tolerance to environmental degradation
- 0 value shows the most tolerant, normally categorized as invasive or introduced nonnative species
- \circ 10 value shows the least tolerance, labeled as rare and endangered
 - plants

Soil analysis results Heavy metal index:

All sites showed LOW stressors

HMI extent was estimated for three categories: low, moderate,

and high stressor-levels, where:

Low = all 12 elements below background High = 3 or more elements were above background Moderate = between low and high

Soil analysis results: Heavy metal index:

Heavy Metal IndexAll metals ≤ background concentrations3 or more metals > background concentrations	Indicator of Stress	Low Stressor-Level Threshold	High Stressor-Level Threshold
	Heavy Metal Index	All metals ≤ background concentrations	3 or more metals > background concentrations

Soil analysis results: Heavy metal index

Metal	Primary Anthropogenic Association	Natural Background Concentration (mg/kg)	Stress-Level Threshold (mg/kg)
Silver (Ag)	Industry	0.05 - 1.00	1.0
Cadmium (Cd)	Agriculture	0.1 - 1.0	1.0
Cobalt (Co)	Industry	< 50	25
Chromium (Cr)	Industry	0.5 – 250	125
Copper (Cu)	Agriculture / Industry / Roads	2 – 50	50
Nickel (Ni)	Industry / Agriculture	0.2 - 450	225
Lead (Pb)	Roads / Industry	Mean of 18	35
Antimony (Sb)	Industry	0.1 - 1.9	1.0
Tin (Sn)	Industry / Agriculture	1.7 – 50	17
Vanadium (V)	Industry / Roads	36 - 150	150
Tungsten (W)	Industry / Agriculture	< 2	2.0
Zinc (Zn)	Industry / Agriculture	10 - 150	150

Ag Average Soil Concentration (mg/kg)

Cd Average Soil Concentration (mg/kg)

Co Average Soil Concentration (mg/kg)

Cr Average Soil Concentration (mg/kg

Cu Average Soil Concentration (mg/kg)

Ni Average Soil Concentration (mg/kg)

Sb Average Soil Concentration (mg/kg)

Sn Average Soil Concentration (mg/kg)

V Average Soil Concentration (mg/kg)

W Average Soil Concentration (mg/kg)

Zn Average Soil Concentration (mg/kg)

Pb Average Soil Concentration (mg/kg)

Phosphorus analysis results:

Stressor-Level Threshold Groups	Reporting Groups Included	Low Stressor-Level Threshold (mg P / kg soil)	High Stressor- Level Threshold (mg P / kg soil)
Estuarine	EH, EW	≤ 519	> 969
Coastal Plains	CPL-PRLH, CPL-PRLW	≤ 582	> 1180
Eastern Mountains & Upper Midwest	EMU-PRLH, EMU-PRLW	≤ 914	> 1280
Interior Plains	IPL-PRLH, IPL-PRLW	≤ 1110	> 1810
West	W-PRLH, W-PRLW	≤ 1140	> 2090

Layer	depth (cm)	Ρ	Low or high stress
19N03673	0.0-12.0	565.37	Low
19N03674	12.0-35.0	408	Low
19N03675	35.0-100.0	477.59	Low
19N03676	0.0-10.0	598.84	Low

Layer	depth (cm)	Ρ	Low or high stress
19N03677	0.0-67.0	435.52	Low
19N03678	67.0-101.0	538.52	Low
19N03679	0.0-1.0	598.18	Low

Layer	depth (cm)	Ρ	Low or high stress
19N03680	0.0-50.0	579.07	Low
19N03681	0.0-10.0	592.49	Low

Layer	depth (cm)	Ρ	Low or high stress
19N03685	0.0-0.60	430.13	Low
19N03686	0.0-10.0	440.2	Low

Layer	depth (cm)	Ρ	Low or high stress
19N03687	0.0-26.0	532.71	Low
19N03688	26.0-50.0	398.34	Low
19N03689	50.0-100.0	394.56	Low
19N03690	0.0-10.0	603.91	Low

Layer	depth (cm)	Ρ	Low or high stress
19N03691	0.0-76.0	524.1	Low
19N03692	0.0-10.0	528.72	Low

Layer	depth (cm)	Ρ	Low or high stress
19N03693	0.0-55.0	536.68	Low
19N03694	0.0-10.0	581.2	Low

Muscotah

Layer	depth (cm)	Ρ	Low or high stress
19N03695	0.0-11.1	850.96	Low
19N03696	11.0-36.0	788.92	Low
19N03697	36.0-50.0	1160.5	High
19N03698	0.0-10.0	973.62	Low

FUTURE PLANS FOR WETLANDS PROTECTION AND RESTORATION

- Initiate watershed planning efforts that include isolated or vulnerable wetlands
- Develop water quality standards for wetlands
- Develop and institute wetland regulations
- Establish partnerships that support wetland restoration
- Encourage or pursue research on the effectiveness of wetland restoration methods
- Actively pursue wetland restoration

Contact Information

Nestoria L. Wright 1107 Goldfinch Road Horton, Kansas 66439 Phone: 785-741-5335 Email: Kickapoo.nestor@gmail.com

Acknowledgement

Dr. Eliodora Chamberlain - EPA Region-7 Wetland Technical Consultant

Jessica Raley - Kickapoo Tribe in Kansas Wetland Program Coordinator

KEO Staff - David Hebert and Chance Bentley

Frank Norman and Staff