Electric Power Infrastructure and Collaborative R&D on Desktop Wetland Identification

Becca Madsen, MEM / Nalini Rao, PhD Senior Technical Leader / Senior Technical Leader

ASWM Webinar: Investing in Resiliency: Intersectional Perspectives of Wetlands, Infrastructure, and Healthy Communities May 18, 2021

✓ in f www.epri.com
© 2021 Electric Power Research Institute, Inc. All rights reserved.

Infrastructure – from Micro to Macro Scale

Renewables on the landscape

Solar Plant in Southern Florida

Solar Plant – Zooming Out

Solar Plant – Zooming Out

Wind in Southeast Texas

Wind – Zooming Out

Planned Renewables

Feb 2021 Energy Information Administration data (<u>link</u>)

Existing Electric Transmission Lines

Homeland Infrastructure Foundation Level Database (link)

EPRI's Mission

Advancing *safe, reliable, affordable* and *environmentally responsible* electricity for society through global collaboration, thought leadership and science & technology innovation

Independent, non-profit research organization

www.epri.com

Desktop GIS Wetland Identification

Previous Research

- **101-level:** brief of generally accepted methods
- **Peer review** of power company method
- Literature review/discussion: could a tool get you to 90% certainty?
- Conceptual design of tool
- Value: cost and time savings

"Additionality" and Automation over Standard Desktop ID

Must have	Like to have	Lower priority
Added accuracy over standard desktop identification of wetlands.	≥90% accuracy in identifying a wetland	
Automated component to desktop wetland identification (with consideration of wetland hydrology and hydric soils)	An indication of minimum-maximum extent or a "confidence interval" of parts of the wetland Application of machine learning (e.g., object- based image analysis) to automate identification	Understanding seasonal changes in wetlands, alerts / automation of wetland change detection
Classification of wetland type at a high level (e.g., marine, estuarine, riverine, lacustrine, palustrine)	Classification of wetland type to subsystem level	

 A note on identification, delineation, classification

What we heard: functionality companies would like to have in a tool

Data and Resolution

	Must have	Like to have	Lower priority
	At the minimum, bringing up-to-date data into one place; with timestamp and reference of data used	Automated updates of data on a regular basis	
	Minimum of coarse support for early planning and siting (resolution of 10m may be acceptable for large scale right of way siting)	More accurate support for early planning and siting (≤10m preferred).	Ability to identify a <0.5 acre wetland
		Ability to bring in shapefiles of areas of interest, and to download data results from area of interest (a "must have" for potential future expansion, but a "like to have" for prototype phase)	
	Must have	Like to have	Lower priority
	User level of expertise: knowledgeable of GIS		User level of expertise: not knowledgeable of GIS
	Watershed or county- level proof of concept/prototype	Regional proof of concept/prototype	National proof of concept/prototype

NASA Landsat			
(30m), weekly			
Truecolor			
May 10, 2019			

Airbus Pléiades (0.5m), on demand Truecolor May 30, 2019

May 23, 2017

Collaborative Tool Development

- RFP process
 - Shout out to applicants from St. Mary's University*, State University of New York*, Ducks Unlimited*, ICF, Chesapeake Conservancy (* = presented on ASWM webcasts)
- Chesapeake Conservancy's approach
 - Prototype web tool + method development
 - Artificial Intelligence (AI) based predictions
 - Goal:
 - Find a model with useful features that are widely available
 - Make it available for prediction in other areas

Method, Training Data, Geographic Areas

- UNet, a form of deep learning
 - Object based image analysis
 - Achieves 18% accuracy improvement over fully convolutional networks

Training data from areas of interest

Lesson learned: companies may have delineated wetland data, but may be unsuitable for training

Data Inputs

SENTINEL-2

NAIP

LiDAR intensity

Geomorphons

www.epri.com

Geomorphons

- Landform classification approach derived from Lidar digital elevation models (DEMs)
- Jasiewicz and Stepinski 2013

Pattern in the noise

Results – DE Only

Visual

18

Lesson learned: we 'broke Google' ... there can be challenges with cloud based computing/storage/analytics platforms

Results – DE Only

- Performance stats
- Intersection over union
 - Relationship of probability of detection (recall) & precision of detection
 - IOU of >= 0.95 considered the best practices for industry standards
 - Routinely see state of the art detectors < 0.95 IOU
- Why a lower score is anticipated

Trained 4 models

Data Inputs of Model	IOU Score
Sentinel-2 & NAIP	81.4%
Sentinel-2 & NAIP +LiDAR	83.5%
Sentinel-2 & NAIP +Geomorphons	85.7%
Sentinel-2 & NAIP +Geomorphons +LiDAR	85.6%

TOOL DEMO

Next Steps

- Model refinement
 - Adding training data from NY, MN areas (July 2021)
- Publicize results
 - ArcGIS StoryMap
 - Demo video
 - Peer review article

StoryMap sneak peek

Next Steps

- Seek additional funding Your ideas appreciated!
 - Support open source results
 - Support online tool access
 - Expand geographic area of model application
 - Incorporate additional training data?

My contact info: Becca Madsen Senior Technical Leader bmadsen@epri.com

- EPRI member testing for potential tailoring (linear infrastructure)
 - Other interest from organizations tackling linear infrastructure environmental issues?

Green Infrastructure: ROI, Stacking, and Ecological Assets

www.epri.com

Thank you!

Together...Shaping the Future of Electricity

Becca Madsen Senior Technical Leader bmadsen@epri.com Nalini Rao Senior Technical Leader nrao@epri.com

REFERENCE SLIDES

More about UNet

- Deep learning and Convolutional Neural Networks
- UNet
 - Segmentation object detection with localization
 - Symmetric convolution and deconvolution pipeline
 - Deconvolution with up-sampling
- Wetland prediction by traditional machine learning
 - Very high accuracy with Lidar
 - Catch: high quality, controlled data, small area, a lot of manual/algebraic operation during data preprocessing
 - Very difficult and costly to scale up
- Al
 - feature extraction an autonomous process of the algorithm
 - less quality and less controlled data okay to extract the dominant pattern
 - easy to scale up and high transferability across space and time

"U-Net takes advantage of the power of deep learning, but also considers contextual information and is able to perform image segmentation into classification categories (Ronneberger et al. 2015). U-Net is a major addition to the analytics of segmentation problems since the discovery of FCN [fully convolutional networks] by Long et al. (2015). Given the ~18% accuracy improvement with FCN in land cover classification compared to traditional machine learning with OBIA [object-based image analysis] (Liu et al. 2018), it is reasonable to expect even higher accuracy and better segmentation with our proposed U-Net model. U-Net is a sophisticated architecture for achieving semantic segmentation with computer vision. Segmentation works by identifying the edges pixel groups and labelling each pixel with a class. This is achieved by a series of algorithms: convolution, max pooling, up sampling, and final convolution (Ronneberger et al. 2015). Convolution and max pooling convert a high-resolution image to low resolution one, ensuring the detection of an object by observing surrounding pixels. Once an object is identified in a down sampled image, delineating the object in the original high-resolution image is achieved with up sampling."

- Chesapeake Conservancy

More about Model Evaluation / IOU

- Recall or Sensitivity
 - probability of detection
 - what fraction of data is recovered in the model prediction
- Precision
 - what fraction of predicted wetland is wetland in the data
- IOU < recall or precision
- IOU of >= 0.95 considered the best practices for industry standards
- State of the art detectors < 0.95 IOU</p>

https://i.stack.imgur.com/JIHnn.jpg

