Evaluation and Regional Comparison of USEPA Intensive, Level-3 Monitoring: Consolidating Coastal Wetland Datasets and Programs

Karina Johnston, Melodie Grubbs, *Christine Whitcraft, Jeff Crooks, Kellie Uyeda, Chris Enyart

EPA 3-Tier Wetland Monitoring Program

LEVEL 1 – mapping and landscape-level assessments

LEVEL 2 – rapid assessments (e.g. CRAM)

LEVEL 3 – site-intensive monitoring

Goals

Apply USEPA's Level 1-2-3 framework to develop

1) standardized protocols

which and produce a support of the

- 2) data consolidation techniques
- 3) applications for standard monitoring parameters with a focus on southern California wetlands

"But what is your question?"

• Extent-distribution

- How has the area of a wetland changed over time?
- Typology
 - Has wetland habitat shifted habitat classification (e.g. from salt flats to salt marsh)?
- Diversity
 - Has the composition of key populations changed in response to environmental or anthropogenic drivers?

Function-based questions

• How did the composition of functional groups in the vary as a function of wetland type or through time?

- Water quality
- Plant community
- Invertebrates
- Fish community

Water quality

Plant sampling methods

Estimated cover category	Cover class	
>0-1%		
>1-5%	2	
> 5 - 25 %	3	
> 25 - 50 %	4	
> 50 - 75 %	5	
> 75 - 95 %	6	
> 95 - 100 %	7	

Comparisons of Vegetation Sampling

Per-plot comparisons by species

Crooks et al. unpublished

OC

· # quadrat (effort = area)]

Invertebrate sampling methods

- Core size (area)
- Core depth
- Sampling frequency
- Sieve size
- Preservation technique
- Identification
- Taxonomic resolution

Community composition did not differ between 300 μm and 500 μm samples at the species or phylum levels

(Pseudo-F = 0.92, p= 0.454, species: pseudoF = 0.59, p= 0.742)

Metric	Notes
Species richness	Affected by sampling area/volume
Total abundance/density	Affected greatly by sieve size
Diversity metrics (J', H", 1/D)	Affected by sampling area/volume
Community composition	Level of analysis can vary – species, higher taxonomic,
(multivariate)	functional groups, relative abundance - but may provide
	an alternative to univariate metrics of species richness
	and diversity. Usually outside assumptions of underlying
	distributions.
Cumulative distribution functions	
(CDFs) (Ferraro et al 2005)	
Diversity estimation via	Can be used to overcome issues with species richness and
rarefaction curves (species and	area relationships as well as lower sample size.
sample based)	
Biological Condition Gradient	Descriptive modelling that can focus on key species but
(BCG)	requires best professional judgement from experts
Indices (condition) (e.g. AZTI Biotic	Most of these are based on the proportional abundance
Index [AMBI], M-AMBI,	of species belonging to groups based on their
Invertebrate Community Index	sensitivity/tolerance to environmental stress
[ICI], Benthic Response Index	Requires best professional judgement from experts
[BRI])	
Biomass	Less affected by sieve size than other metrics (e.g.
	Valenca and Los Santos YR)

Fish sampling methods

ast net	3RUV	look & line	ish seine	
	_	_	-	Pacific staghorn scu
				longjaw mudsucker
				flathead grey mullet
				diamond turbot
				cheekspot goby
				California needlefish
				California killifish
				bay pipefish
				bay bleenie
			_	spotted sand bass
				leopard shark
				unknown smoothhou
				unknown guitarfish
			_	California corbina
-			-	vellowfin croaker
-				white seabass
-	-			California halibut
-	1	-	-	unknown anchovy
-	-	_	-	opaleve
-	-	-	-	unknown surfperch
-			_	Vantie sargo
	-		-	unknown goby
-	-			California round ray
	-			Dat ray
		_		topsmelt silverside

Whitcraft et al. unpublished

Estuary Marine Protected Area Monitoring Protocol

Version 1.3 Draft December 2022

OCEAN PROTECTION COUNCIL

Evaluation and Regional Comparison of USEPA Intensive, Level-3 Monitoring: Consolidating Coastal Wetland Datasets and Programs

March 2020

Prepared for United States Environmental Protection Agency

The Bay Foundation 8334 Lincoln Bivd. #310, Los Angeles, CA 90045 (888) 301-2527 www.santamonicabay.org

California Estuarine Wetland Monitoring Manual (Level 3)

March 2021 (Version 2.0)

The Bay Foundation

California State University, Long Beach TiJuana River National Estuarine Research Reserve Southern California Coastal Water Research Project University of Southern California Sea Grant Program California State University, Channel Islands

Category	Evaluation Metric	Type of Output
	Correlation to L2 CRAM	List
	Relationship to Uniform Performance Metrics *	Notes
	Office Preparation Time	Categorical
/ Effort	Equipment Construction Time (one time)	Categorical
	Field Time	Categorical
	Laboratory Time	Categorical
me	Post-Survey Processing / QAQC Time	Categorical
Ē	Minimum Repetition (site-dependent)	Categorical
	Relative Cost (equipment and supplies)	Categorical
annel	Specialty Equipment or Clothing Required	Categorical
	Ease of Transport (amount or weight of supplies)	Categorical
	Ease of Implementation	Categorical
	Expertise / Skill Level	Categorical
uire	Number of Personnel	Categorical
E Pe	Training Requirements	Notes
Ř	Seasonality of Survey Time	Time Range
	Suggested Frequency	Categorical
	Accuracy (at a survey area level)	Categorical
ŋ	Precision (at a survey area level)	Categorical
∠ ⊃at	Type of Output	Categorical
alit, T	Qualitative-Quantitative Score	Categorical
yey Qu;	Subjectivity-Objectivity Score	Categorical
Un U	Active or Passive Monitoring Style	Categorical
S	Specialty Computer Software Required	Categorical
	Availability of Online / External Resources	Categorical
(0)	Wetland Type Applicability	Notes
suo	Images or Multi-Media Required	Categorical
atio	Degree of Impact / Disturbance	Categorical
mit	Vegetation Height Limitation	Categorical
	Appropriate for Tidal / Wet Habitats	Categorical
tial	Tide Height	Categorical
en	Regional or Broad Implementation **	Categorical
oot	Potential for Hazards / Risk	Categorical
	Restrictions	Notes

* based on the USACE UPM metrics ** based on monitoring literature review table

Effects of Elevated Sea Levels and Waves on Southern California Estuaries During the 2015–2016 El Niño

Madeleine E. Harvey¹ Sarah N. Giddings¹ • Eric D. Stein² • Jeffrey A. Crooks^{1,3} • Christine Whitcraft⁴ • Timu Gallien⁵ • John L. Largier⁶ • Liesl Tiefenthaler² • Hallee Meltzer⁷ • Geno Pawlak⁸ • Karen Thorne⁹ • Karina Johnston¹⁰ • Richard Ambrose¹¹ • Stephen C. Schroeter¹² • Henry M. Page¹² • Hany Elwany¹³

Thank you!

Christine Whitcraft

Christine.Whitcraft@csulb.edu

<u>@whitcraftmudlab</u>