

THE FUNCTION BASED RAPID STREAM ASSESSMENT (FBRSA) 2024

Presentation Nov 14, 2024

Nick Ozburn Senior Project Manager Army Corps of Engineers Baltimore District

MARYLAND FUNCTIONAL ASSESSMENT TEAM

- USEPA R3: MEGAN FITZGERALD, NATALIE MOXLEY, CHRISTINE MAZZARELLA
- EPR: CIDNEY JONES & RICH STARR
- USACE: NICK OZBURN, MATT HYNSON, CHRIS SPAUR, JACK DINNE
- MDE: DENISE CLEARWATER, RANDAH KAMEL, ALEX SICARD
- USFWS: MARK SECRIST
- USEPA HQ: SAM LEBERG (ORISE FELLOW)
- Additional technical review by multidisciplinary group and field testing assistance from Corps PMs.
- MD DNR FISHERIES ASSISTANCE ON APPLYING MBSS TO FBRSA
- FUNDING FOR EPR PROVIDED THROUGH EPA GRANT

•1) FCAMS and the Maryland Stream Framework

3

•2) Function Based Rapid Stream Assessment Overview

•3) METRICS 1-11

U.S. ARMY

OUTLINE

FCAMS AND THE MARYLAND STREAM FRAMEWORK (MSMF)

What is an FCAM?

FCAM= Functional or Conditional Assessment Methodology

'08 Mitigation Rule: Encourages use of FCAMS to determine changes in resource quality instead of reliance on ratios.

<u>FCAMS used in MSMF</u>: -Function Based Rapid Stream Assessment (FBRSA)

-EPA Rapid Bioassessment Protocolhabitat forms (RBP)

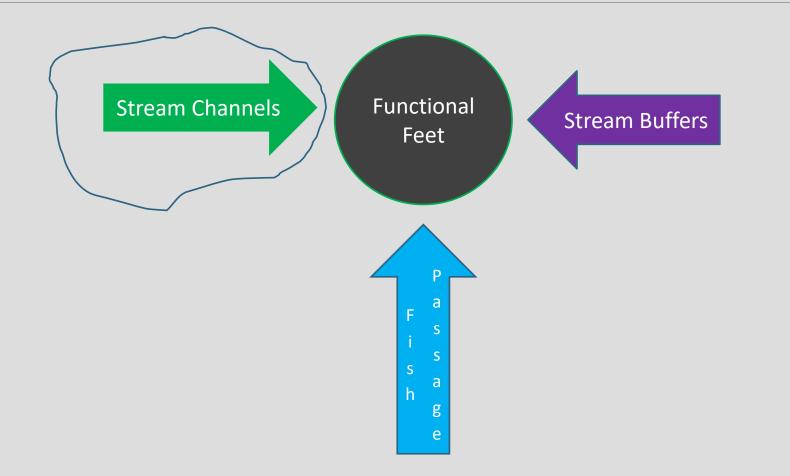
-Stream Buffer quality Assessment (SBQA)

THE MARYLAND STREAM MITIGATION FRAMEWORK

- TOOL DESCRIPTION:
 - A PROCESS FOR ESTIMATING THE VALUE OF STREAM LOSSES (IMPACTS) AND GAINS (MITIGATION).
 - RELIES HEAVILY ON FCAMS AND INCENTIVIZES ECOLOGICALLY STRATEGIC MITIGATION WHILE DETERRING IMPACTS TO OUR MOST VALUABLE RESOURCES
- LOCATION: <u>HTTPS://WWW.NAB.USACE.ARMY.MIL/MISSIONS/REGULATORY/MITIGATION/</u>
- STATUS:

•

- History
- Outreach
- OFFICIAL RELEASE SEPT 2023
- MOVING FORWARD:
 - TRAINING (OFFICE AND FIELD)
 - INCREASING CAPABILITIES (FISH PASSAGE, MAPPING, STREAM ASSESSMENT UPGRADE)
 - FINAL UPDATE IN 2025 (V.2.0)


THE MARYLAND STREAM MITIGATION FRAMEWORK VERSION 1 FINAL (MSMF V.1. FINAL) ^{1,2,6,7}

ACKGROUN	D-IMPACTS	BACKGROUND	D-MITIGATION	
orps Project ID	NAB-2023-85656	Corps Project ID	NAB-2023-88552	
roject Name:	Acme Airport Runway Expansion	Project Name:	Panther Branch Mitigation	
ounty:	Baltimore	County:	Baltimore	
orps PM:	James Brown	Corps PM:	James Brown	
ponsor:	Acme Airports	Sponsor:	NA	
andowner(s):	Acme Airports	Landowner(s):	Bob Smith	
ollaborators:	GKH, JMB, CTT	Collaborators:	BTD, MPT	ĺ
<u>^</u>	AITIGATION TYPE	Peri	mittee Responsible	I
	CI II	A A A DV		

This example illustrates impacts for a proposed airport and associated permitee responsible mitigation. Only Tabs 1, 2, 3, and 4 were needed. The numbers below auto populate. For impacts purchasing from a mitigation bank, only tabs 1 and 2 would be completed, while the bank would independently have their own workbook with tabs 1 and some combination of 3, 4, 5, 6, and/or Fish Passage dependent on

TALLY OF IMI	PACTS AND MITIGATION	
CALCULATION NAME	FUNCTIONAL FEET (FF)	SUMMARY
STREAM IMPACTS TOTAL	-910	
STREAM MITIGATION TOTAL FOR STREAM CHANNELS	693	
STREAM MITIGATION TOTAL FOR STREAM BUFFERS	217	
STREAM MITIGATION TOTAL FOR FISH PASSAGE ³	0	
FUNCTIONAL FOOT BALANCE 4	0	

Mitigation Options and Calcs

MSMF RAW REACH VALUE CALCULATION

Physiographic Region Coastal Plain, Piedmont, Mountain Stream Quality FCAM used to determine stream quality. FBRSA or RBP Channel Thread Primary, Second, Third. Each thread in a stream has it's own entry in calculator

Drainage Area

Accounts for stream size by considering area of land draining to the center of the assessed reach. 7

STREAM MITIGATION IN STREAM CHANNELS

Physiographic Region

Drainage Area

Length

delta

dilution

Adjustments

Functional Feet

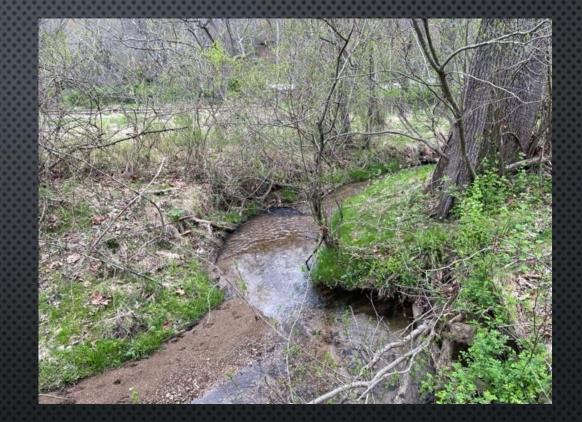
Stream Mitigation Calculator (From MSMF Appendix A1, Tab 3)

				<u>S1</u>	REA/	M MIT	IGATI(<u>ON CAL</u>	CULAT	OR for	<u>Strea</u>	m Ch	annels			
BACKGR	OUND IN	FORM	ATION										TOTAL S	TREAM	GAINS fr	om Stream Channels
Corps Proje	ct ID #:	NAB-20	23-88552		Corps P/	M:	James Brow	/n						(F	unctional f	eet)
Project Nan			Branch Mitigation		Date:		26-Feb-23									
Lat/Long: 38.58960, -76.9567 Sponsor: Acme Airports County: Baltimore Collaborators: DBT, CKL											693					
Raw Change in Reach Value (Functional Feet) Adjustments Stream																
<u>Reach Name</u>	<u>Physiographic</u> <u>Region</u>	<u>Evaluation</u>	Activity	<u>Resource</u> <u>Type</u>	<u>Length</u> (<u>Feet)</u>	<u>Stream</u> Quality	<u>Channel</u> <u>Thread</u>	Drainage Area (sqmi)	<u>Raw Reach</u> <u>Value</u> (<u>Functional</u> <u>Feet</u>)	<u>Raw Change in</u> <u>Value</u> (Functional <u>Feet)</u>	<u>Change in</u> <u>Reach Length</u> <u>Adjustment</u>	<u>Site</u> Sensitivity	<u>Site Pro</u>	<u>ptection</u>	Gains (Functional Feet)	REMARKS (Incude reach coordinates)
reach 1 small perennial ex	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Headwater	1000		Primary	0.5	267	<u>305</u>	No Change	10%	Agricultural Easement	Easement	366	
perennititier						35%	1	0.76		-	0		0.0)4	-	
	Piedmont	Proposed	Restoration/Enhancement	Perennial Headwater	1000	75%	Primary 1	0.5	572		0.5 <u>0</u>	<u>31</u>	<u>3</u>	<u>0</u>		36.90899, -76.99889. Main channel of reach
Reach 2 mid	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Headwater	325		Primary	3	175		No Change	10%	Agricultural Easement	Easement		
perennial example						35%	1	1.53		200	0		0.0)4	229	
	Piedmont	Proposed	Restoration/Enhancement	Perennial Headwater	325	75%	Primary 1	3	374		0.5 <u>0</u>	<u>20</u>	1	0		36.90888, -76.99771

Stream Mitigation Calculator (From MSMF Appendix A1, Tab 3)

				<u>S1</u>	REA/		IGATI	ON CAL	CULAT	OR for	- Strea	m Ch	annels			
BACKGR		IFORM	ATION										TOTAL S	TREAM	GAINS fro	om Stream Channels
Corps Proje	ect ID #:	NAB-20	23-88552		Corps P	M:	James Broy	wn						(F	unctional F	eet)
Project Nar			Branch Mitigation		Date:		26-Feb-23								400	
Lat/Long: County:		38.5896 Baltimor	50, -76.9567 e		Sponsor Collabo		Acme Airpo DBT, CKL	orts							693	
			Raw Chang	ge in Rea	ch Value	• (Functio	nal Feet)					Adju	ustments		Stream	
<u>Reach Name</u>	<u>Physiographic</u> <u>Region</u>	<u>Evaluation</u>	Activity	<u>Resource</u> <u>Type</u>	<u>Length</u> (<u>Feet)</u>	<u>Stream</u> Quality	<u>Channel</u> <u>Thread</u>	<u>Drainage Area</u> (sqmi)	<u>Raw Reach</u> Value (Functional Feet)	<u>Raw Change in</u> <u>Value</u> (Functional <u>Feet)</u>	<u>Change in</u> <u>Reach Length</u> <u>Adjustment</u>	<u>Site</u> Sensitivity	<u>Site Pro</u>	otection	Gains (Functional Feet)	REMARKS (Incude reach coordinates)
reach 1 small	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Headwater	1000		Primary	0.5	267	205	No Change	10%	Agricultural Easement	Easement	244	
perennial ex						35%	6 1	0.76		<u>305</u>	0		0.0	04	366	
	Piedmont	Proposed	Restoration/Enhancement	Perennial Headwater	1000		Primary	0.5	572		0.5	<u>31</u>	3	<u>0</u>		36.90899, -76.99889. Main channel of reach
Reach 2 mid	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Headwater	325	75%	6 1 Primary	0.76	175		<u>Q</u> No Change	10%	Agricultural Easement	Easement		1
perennial example						35%	6 1	1.53		200	0		0.0	04	229	
	Piedmont	Proposed	Restoration/Enhancement	Perennial Headwater	325	75%	Primary	3	374		0.5 <u>0</u>	<u>20</u>	1	0		36.90888, -76.99771

FCAM scores go here!!!


FBRSA EXAMPLE:

MITIGATION IS PROPOSED ON A HEADWATER PERENNIAL CHANNEL

STREAM RESTORATION WORK IS PROPOSED TO OFFSET STREAM IMPACTS

COMBINED SCORE SHOWS A DIFFERENCE OF 51% EXISTING VS 87% PROPOSED AFTER THE STREAM IS ASSESSED USING THE FBRSA

-THIS INCLUDED BOTH THE RAPID STREAM ASSESSMENT (PHYSICAL) AND THE MBSS ASSESSMENTS (BIOLOGICAL) COMBINE TO CREATE THE FBRSA SCORE IN % EXISTING VS % PROPOSED

11

EXAMPLE:

MITIGATION IS PROPOSED ON A HEADWATER PERENNIAL CHANNEL

STREAM RESTORATION WORK IS PROPOSED TO OFFSET STREAM IMPACTS

COMBINED SCORE SHOWS A DIFFERENCE OF 51% EXISTING VS 87% PROPOSED AFTER THE STREAM IS ASSESSED USING THE FBRSA

-THIS INCLUDED BOTH THE RAPID STREAM ASSESSMENT (PHYSICAL) AND THE MBSS ASSESSMENTS (BIOLOGICAL) COMBINE TO CREATE THE FBRSA SCORE IN % EXISTING VS % PROPOSED

2024 FUNCTION-BASED RAPID STREAM ASSESSMENT (FBRSA)

SCORING SUMMARY SHEET

User must complete the PreSite Visit sheet prior to data entry in this sheet.

ю						
8	Coml	bined Score	MBSS	Score	RSA S	core
	EXISTING Pre-Project	51%	55	%	49	%
	PROPOSED Post-Project	87%	80	%	91	%
Ř		MB	SS Results			
89	Ν	/letric #	Existing	Total	Proposed	Total
ġ,	B1	Benthic IBI (1-5)	3		4	
88	B2	Number of EPT Taxa (1-5)	3	11.0	4	16.0
23	B3	Fish IBI (1-5)	3	11.0	3	10.0
8	B4	Abundance / Sq.M. (1-5)	2		5	
ĝ		Rapid Stream Ass	sessment (RSA)	Results		
99	Ν	/letric #	Existing	Total	Proposed	Total
8	R1	WQ	6		7	
88	R2	Shading	7		5	
23	R3	Riffle Cover	3		10	
	R4	Pool Cover	3		10	
	R5	Vel/Depth Diversity	4		8	_
	R6	Vertical Stability	6	54	10	100
	R7	BHR	3		10	
	R8	ER	6		10	
	R9	FP Soil Drainage	2		10	

4

10

BEHI

FP Exclusion

R10

R11

10

10

EXAMPLE:

MITIGATION IS PROPOSED ON A HEADWATER PERENNIAL CHANNEL

STREAM RESTORATION WORK IS PROPOSED TO OFFSET STREAM IMPACTS

COMBINED SCORE SHOWS A DIFFERENCE OF 51% EXISTING VS 87% PROPOSED AFTER THE STREAM IS ASSESSED USING THE FBRSA

-THIS INCLUDED BOTH THE RAPID STREAM ASSESSMENT (PHYSICAL) AND THE MBSS ASSESSMENTS (BIOLOGICAL) COMBINE TO CREATE THE FBRSA SCORE IN % EXISTING VS % PROPOSED

2024 FUNCTION-BASED RAPID STREAM ASSESSMENT (FBRSA) SCORING SUMMARY SHEET

Use	User must complete the PreSite Visit sheet prior to data entry in this sheet.												
Com	bined Score	MBSS	Score	RSA Score									
EXISTING Pre-Project	55	%	49%										
PROPOSED Post-Project	87%	80'	%	91%									
	MBS	SS Results											
1	Metric #	Existing	Total	Proposed	Total								
B1	Benthic IBI (1-5)	3		4									
B2	Number of EPT Taxa (1-5)	3	11.0	4	16.0								
B3	Fish IBI (1-5)	3	11.0	3	10.0								
B4	Abundance / Sq.M. (1-5)	2		5									

	ssessment (RSA)	Results		
Metric #	Existing	Total	Proposed	Total
WQ	6		7	
Shading	7		5	Ī
Riffle Cover	3		10	Ī
Pool Cover	3		10	Ī
R5 Vel/Depth Diversity R6 Vertical Stability		54	8	100
			10	
BHR	3		10	Ī
ER	6		10	Ī
FP Soil Drainage	2		10	Ī
BEHI	4		10	Ī
FP Exclusion	10	1	10	İ
	Shading Riffle Cover Pool Cover Vel/Depth Diversity Vertical Stability BHR ER FP Soil Drainage BEHI	WQ6Shading7Riffle Cover3Pool Cover3Vel/Depth Diversity4Vertical Stability6BHR3ER6FP Soil Drainage2BEHI4	WQ6Shading7Riffle Cover3Pool Cover3Vel/Depth Diversity4Vertical Stability6BHR3ER6FP Soil Drainage2BEHI4	WQ 6 7 Shading 7 5 Riffle Cover 3 10 Pool Cover 3 10 Vel/Depth Diversity 4 8 Vertical Stability 6 10 BHR 3 10 ER 6 10 FP Soil Drainage 2 10 BEHI 4 10

RAPID STREAM ASSESSMENT METRICS 1-5

- METRICS 1-5 COVER:
- VISUAL WATER QUALITY ASSESSMENT (R1)
- CHANNEL SHADING (R2)
- RIFFLE/RUN & POOL GLIDE COVER (R 3-4)
- VELOCITY DEPTH DIVERSITY (R-5)

Metric Number	Metric	Applicability	Sampling Extent	Sampling in multi- thread channels
R1	Water Appearance and Nutrient Enrichment	All streams	Whole project reach	Assess primary thread only
R2	Channel Shading	All streams	At least 3 representative locations	Assess all threads
R3	Riffle and Run Complexity	All streams	At least 3 representative riffle/run units	Assess in primary channel, but see metric instructions
R4	Pool and Glide Cover for Aquatic Fauna	All streams	At least 3 representative pool/glide units	for scoring multi- thread streams.
R5	Velocity/Depth Diversity	Perennial streams only	At least 3 representative riffle- pool sequences	Assess percent riffle in primary channel; assess velocity/depth throughout all

RI: WATER APPEARANCE AND NUTRIENT ENRICHMENT

Instruments: Eyes and Nose Assessment: Sights & Scents Sample: Whole Reach

U.S. ARMY

US Army Corps of Engineers®

			ENE
NG	No Impairments or Impairments limited to minimal turbidity, minimal iron floc, or minimal algae. No chemical or sewage odors observed.	10	10
FUNCTIONING	Very clear, or clear but tea-colored; no oil sheen on surface; no noticeable film on	9	9
VC1	submerged objects or rocks other than natural periphyton and occasional iron residues.		
Ŀ.	Clear water along entire reach; little algal growth or iron flocculant present, but limited	8	8
	to 0-20% of the stream area.		
	Where impervious surface in the drainage area is > 10% Metric score cannot e	exceed 6.	
ISK	Score can be lower than 6, see scoring criteria below.		
- K	Moderate impairments including frequent turbidity and common algal blooms or iron		
-A7	<i>floc. Impairments affect 21-40% of stream area.</i> No sewage or chemical odors observed.		
FUNCTIONING-AT-RISK	Fairly clear or slightly greenish water along entire reach; no oil sheen on water surface.	6	6
NO	See Manual for difference between oil sheen and bacterial sheen. Score 6 when one of the		
Ĕ	following is true, score 4 if both are true:		
NO	1. Frequent cloudiness likely, especially after storm events.		
5	2. Common algal growth or iron flocculants on stream substrate noticeable throughout	4	4
	the reach.		
	Severe impairments including chemical water pollution (sewage leaks or chemical		
5	pollution, nutrient pollution affecting most of the stream). Obvious water pollutants;	3	3
NN N	floating algal mats, gray water, bright green water, surface scum or froths, sheen or		
6	heavy coat of foam on surface; or strong odor of chemicals, oil, sewage, or other		
22	pollutants. Pea-green, gray, or brown water along entire reach; severe algal blooms		
5	creating thick algal mats or iron flocculants in most of the stream. For chemical water		
NOT FUNCTIONING	pollutants affecting most of stream, score 1. For pollutants limited to excess algae and		
Ň	iron flocculant (covering >40% of the stream area) score 3. If iron floc is indicative of acid	1	1
	mine drainage, score 1.		

15

DDD

R1: WATER APPEARANCE AND NUTRIENT ENRICHMENT

- WATER TURBIDITY
- POTENTIAL POLLUTANTS AND NUTRIENTS
- INDICATORS
 - SURFACE SCUM
 - OILY SHEEN
 - STRONG ODORS FROM SEWAGE AND CHEMICALS
 - SUBSTRATE COVERED WITH ORANGE MATERIAL
 - GREENISH COLOR FROM EXCESSIVE NUTRIENT
 INPUTS
 - EXCESSIVE ALGAE AND MACROPHYTES
- Sources
 - 303(D) LIST
 - ASSESSMENT REPORTS
 - LAND USE MAPS AND AERIALS
 - SITE VISIT

R2: CHANNEL SHADING

Instruments: Densiometer Assessment: Whole Reach Sample: At least 3 representative locations

8000080008		8669686		
Metric 2: Chann	el Shading		Functional Category: Geomorpho Parameter: Riparian Vegetation	logy
<u>Materials:</u> Conve <u>Instructions</u> : Use locations within t herbaceous, shru	etric is used to assess ex Densiometer e a convex densiomet the reach. Channel sh	ter to determ nading is spec . Multi-thre	of the water surface within the reach nine the channel shading at a minim cifically the portion of the water surj ad channels: Assess each thread to e reach.	um of 3 representative face that is shaded from
% Shaded:				
Location:				
FUNC	TIONING	F	UNCTIONING-AT-RISK	NOT FUNCTIONIN
	the water surface is hin the reach.	49% - 20%	6 of the water surface is shaded within the reach.	20% - 0% of the wa surface is shaded with reach.

% Shac	ded:									
Locatio	on:									
	FUNCTIONING			F	UNCTIONIN	NOT FUNCTIONING				
≥75% - 50% of the water surface is shaded within the reach.				49% - 20%	6 of the wate within the		shaded		0% of the is shaded w reach.	
EX	10	9	8	7	6	5	4	3	2	1
PRP	10	9	8	7	6	5	4	3	2	1

METRICS R3-5: SETUP HABITAT SAMPLING AREA

Instruments: 300 ft tape, pocket rod Assessment: 3 Riffle/Pool Sequences Sample: Observe cover types, cover extent, and velocity/depth regimes

U.S. ARMY

US Army Corps of Engineers®

TABLE 3. Habitat Sampling Area

RIFFLE/RUNS (R) : Riffles are shallow, steep-gradient channel segments typically located between pools. Riffles also refer to the cross-over section in single-thread sand bed streams and the cascade section of steep mountain streams. Run features are generally included with riffles. *The precense/absence of different velocity/depth regimes is used to score Metric R5.

POOL/GLIDES (P): Pools are (1) deeper than the riffle, (2) have a laterally and longitudinally concave shaped bed surface, and (3) a width that is at least half the width of the wetted channel. Pools sometimes also have a water surface slope that is flatter than the riffle. Glides are included with pools in this assessment. *The precense/absence of different velocity/depth regimes is used to score Metric R5.

	R1	P1	R2	P2	R3	P3	R4	P4
Length (ft):								
*Depth to WS (ft):								
*Vel. >1 fps or <1 fps:								
Length with cover (ft):								

Cover notes: (1) All cover types must be fixed, not mobile. (2) Do not include shot rock (furnished material of uniform size) riffles as cover for Cobble or Boulder voids. (3) In pools - From a cross-section view, consider only the deepest part of the pool.

Check Cover Features	R1	P1	R2	P2	R3	P3	R4	P4
Large wood/fallen trees								
(> 2' long and 4" diam.)								
Boulder voids								
Cobble voids				\mathbf{P}	4			
Flat boulder cover			J					
Overhangs (>0.3 ft								
Dense live roots in								
contact with baseflow								
Macrophyte								
beds/floating veg.								
Micro pools (RIFFLE								
ONLY)								
Gravel spawning beds								
(GLIDES ONLY)								

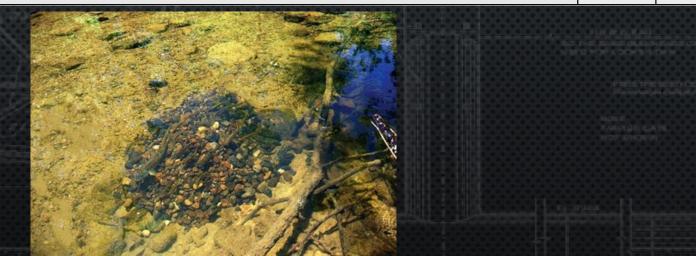

R3: RIFFLE/RUN COMPLEXITY

Figure 14. Dense macrophyte bed and logs within this riffle

	Cover Density Length assessed with cover present			Cover Div # Cover Types preser	-		
	with cover present	EX	PRP	Sand Bed Streams	Other Streams	EX	PRP
ш	≥70%	5	5	4+	5+	5	5
_	40-69%	4	4	3	4	4	4
FAR	20-39%	3	3	2	3	3	3
1-1 1-1	5-19%	2	2	1	2	2	2
ЧN	< 5%	1	1		1	1	1
				0	0	0	0

SUM the scores for Density and Diversity.

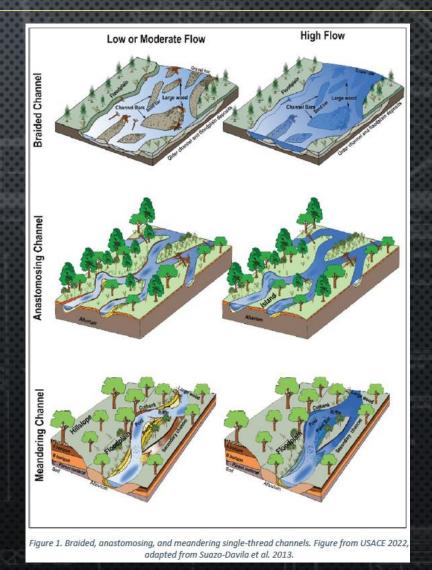
R4: POOL/GLIDE COVER

	otal Length of glide features (ft):		Length with	n cover (ft):		Length with cov	ver (%):		
	Cover Density Length assessed with cover			Cove # Cover Types pre					
	present	EX	PRP	Sand Bed Strean	EX	PRP			
ш	≥60%	5	5	4+	4+ 5+				
-	40-59%	4	4	3		4	4	4	
FAR	25-39%	3	3	2		3	3	3	
E,	15-24%	2	2	1	2	2			
чч	< 15%	1	1		1	1			
2				0	0	0			

SUM the scores for Density and Diversity.

20

Figure 18. Pool with very low cover in the thalweg, the rootwad on the right does not provide cover in the deepest portion of the cross-section and is not counted.



RECORDING HABITAT COVER IN MULTI-THREAD FEATURES

Multi-thread Channels

<u>Instructions:</u> (1) After assessing the primary channel using the instructions above in the habitat sampling area (3 rifflerun features), walk the whole stream reach. (2) Record the total length of side channel features (channels and oxbows below bankfull) within the reach which have perennial flow and are at least 1 ft wide. (3) Determine if length of all side channels is equal to at least 20% of the total reach length. If yes, (4) visually estimate the percent of cover in side channel riffles. (5) visually estimate the percent of the side channels with pool/glide habitat and cover features.

Length of side channels (ft):				
Length with riffle/run cover				60ř
features (ft):				
Length with pool/glide cover				233
features (ft):				

US Army Corps of Engineers®

2024 FBRSA RSA Metrics R6 - R11

		The states	and the fi
	- Warthank	A Para la Car	
		La de la compañía de	
		and the set	and the second sec
	R6	Vertical Stability	
	R7	BHR	1405 all and stand
	R8	ER	
A A A A A A A A A A A A A A A A A A A	R9	FP Soil Drainage	
	R10	BEHI	
	R11	FP Exclusion	S Rive Land
			Charles The Co

IFAI

EPR

Metric R6 – Vertical Stability Extent

Applicability: This metric is applicable to all streams.

Purpose: Vertical stability extent characterizes the potential of localized or widespread downward streambed adjustments.

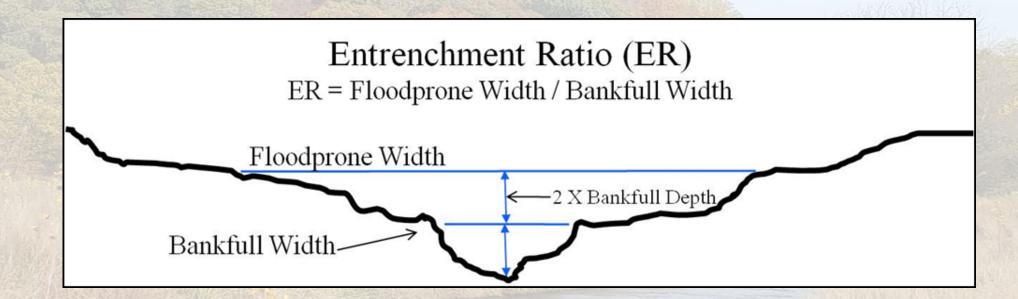
-Essentially a headcut inspection
-Also considers risk of structures or drops that are unnecessarily high. These can put projects at risk.

Metric R6 – Vertical Stability Extent

Functional Capacity	FUNCTION	NING	FL	JNCTIONING	G-AT-RISK		FUN	NOT CTION	IING
Narrative Criteria	Grade con provided numerous tre embedded rock structu riffles Abrupt drops less	l by ee roots, wood, ires or	Stream bed by numer roots, en wood, rock or low slop Abrupt drop	rous tree nbedded structures oed riffles.	contro abrup exceed Modera	m bed olled by t drops ing 1 ft. ate head observed.	Instal he comr sever or abr	ead cu non ai e head	active ts nd/or d cuts rops 2
Rating	10 9	8	7	6	5	4	3	2	1

Scoring for reaches with slope < 2% shown above.

Slopes 2-5% reaches drop heights are 1' for functioning, 1-1.5' and > 1.5' for FAR. Slopes > 5% focus on regular grade control for functioning conditions. Some or sparse grade control for FAR.


Metric R7 – Bank Height Ratio (BHR)

ALCO'L	FL	UNCTIONIN	IG	F	UNCTIONI	NG-AT-RIS	K	NOT	FUNCTION	IING
antis	-	≤ 1.00 - 1.20)		1.21	- 1.49]	1.50 - > 1.70)
	10	9	8	7	6	5	4	3	2	1

- Frequency of flood flows to floodplain
- In-office plan set cross sections and longitudinal profile
- Field pocket rod and hand level or 2 rods and a line level
 - measure from riffle dmax to bankfull
 - measure from riffle dmax to low bank

Metric R8 – Entrenchment Ratio

- ER = FPW / W, where
- FPW = floodprone width, measured at a stage of 2 times the bankfull max depth
- W = bankfull riffle width

Metric R8 – Entrenchment Ratio

and and a second	Functional Capacity	FUN	FUNCTIONING			FUNCTIONING-AT-RISK				NOT FUNCTIONING			
C. N. P. P. BARKY CO.	Average ER Value for the reach	≥ 2	20.0 - 3	.7		3.6	- 1.5			1.4 - 1.0			
1. 12	Rating	10	9	8	7	6	5	4	3	2	1		

Functional Capacity	FUNCTIONING			FUN	FUNCTIONING-AT-RISK				NOT FUNCTIONING			
Average ER Value for the reach	≥	2.2 - 1.	5		1.4	- 1.2			1.1 - 1.0			
Rating	10	9	8	7	6	5	4	3	2	1		

- Amount of floodplain area available for flood flows
- Erosion potential associated with flood flows
- Two categories
 - Unconfined alluvial valleys
 - Confined alluvial or colluvial valleys

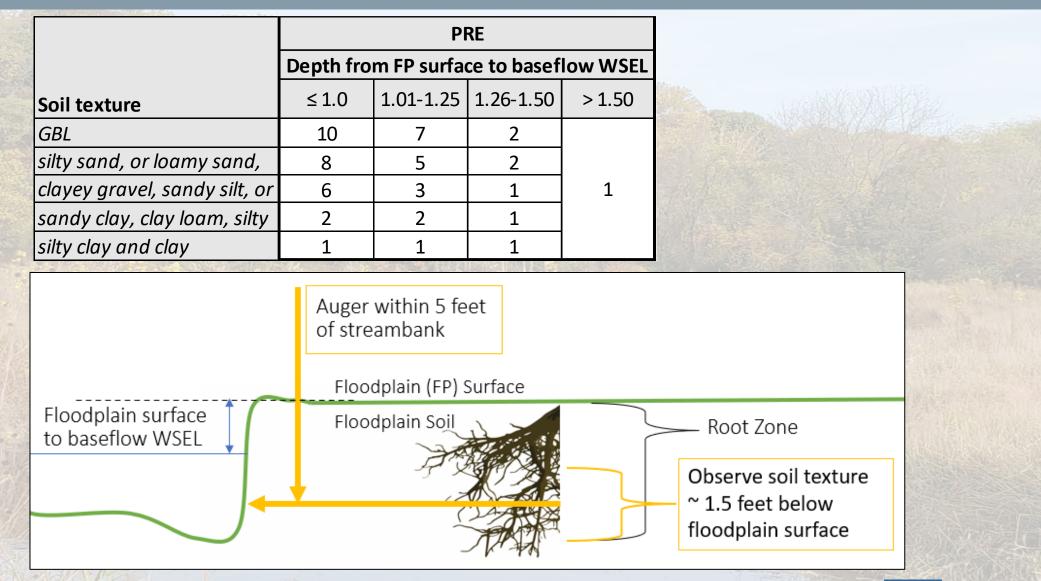
Measure BHR & ER at US and DS ends of the reach.

Low bank height – TW to lower of the two banks. May need a hand level to do this one.

EPR

Low bank

Metric R9 – Floodplain Soil Drainage



Applicability: Streams that naturally support(ed) or could support a stream-wetland complex.

Purpose: Capture the benefits of floodplain soil saturation and the ecological loss when the valley substrates and riparian community are drained.

Metric R9 – Floodplain Soil Drainage

FPR

Metric R9 – Floodplain Soil Drainage

	Depth fro	Winte			
Soil texture	≤ 1.0	1.01-1.25	1.26-1.50	> 1.50	Ser Sand
GBL	10	7	2		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
silty sand, or loamy sand,	8	5	2		
clayey gravel, sandy silt, or	6	3	1	1	
sandy clay, clay loam, silty	2	2	1		
silty clay and clay	1	1	1		

EPR

Metric R10 – Streambank Erosion Extent and Magnitude

		PI	RE	
	Per	cent Erodir	ng Streamb	ank
Dominant BEHI Category	5-9%	10-49%	50-75%	> 75%
Moderate	10	7	3	
High	10	6	3	1
Very High	9	5	2	Ť
Extreme	8	4	1	

- Appendix E has guidance and photos!!!
- Estimates potential for erosion based on bankfull flow conditions.
- BEHI total score of 25 and greater are considered eroding.
- Dominant BEHI is the rating that represents largest portion of eroding banks.

BEHI Score = 45 out of 50 – Eroding

S STORE	and the second	1990 A. 1990	000035.5H							
					Scores					
	1	2	3	4	5	6	7	8	9	10
Α	1	1.1	1.2	1.3	1.4	1.5	1.8	2.1	2.8	>2.8
В	≥ 0.95	0.9	0.7	0.5	0.4	0.3	0.2	0.15	0.05	<0.05
С	≥90	80	75	55	40	30	20	15	5	<5
D	0	20	40	60	70	80	85	90	120	>120
Ε	≥90	80	65	55	40	30	20	15	10	<10
	ore (1-10) bank H/BK	F	9							
	ore (0-10) D/Study bai	nk H	10					Makener		
Root D	ore (0-10) V Density; Loo bank heig	ok at	10			Terry	X			
(D) Sco Bank /	ore (1-10) Angle		7		18		1 And	执法	F.	TRANS
	ore (0-10) e Protectio	on (%)	9			Green a		a sto		
Adjust	tments		0							
Total (Eroding ≥2	25)	45			7. 44	A Start A			

EPR

Metric R11 – Anthropogenic FP Exclusions

Functional Capacity	FUN	CTION	ONING FUNCTIONING-AT-RISK NOT FUNCTIONING .0% 11% - 20% 21% - 30% 31% - > 50%		NING					
Percent active valley bottom excluded	0% - 10%		11%	- 20%	21% -	· 30%	31% - > 50%			
Rating	10	9	8	7	6	5	4	3	2	1

EPR

EXAMPLE:

MITIGATION IS PROPOSED ON A HEADWATER PERENNIAL CHANNEL

STREAM RESTORATION WORK IS PROPOSED TO OFFSET STREAM IMPACTS

COMBINED SCORE SHOWS A DIFFERENCE OF 51% EXISTING VS 87% PROPOSED AFTER THE STREAM IS ASSESSED USING THE FBRSA

-THIS INCLUDED BOTH THE RAPID STREAM ASSESSMENT (PHYSICAL) AND THE MBSS ASSESSMENTS (BIOLOGICAL) COMBINE TO CREATE THE FBRSA SCORE IN % EXISTING VS % PROPOSED

2024 FUNCTION-BASED RAPID STREAM ASSESSMENT (FBRSA)

SCORING SUMMARY SHEET

User must complete the PreSite Visit sheet prior to data entry in this sheet.														
Com	bined Score	MBSS	Score	RSA Score										
EXISTIN <mark>G</mark> Pre-Proj <mark>e</mark> ct	51 <mark>%</mark>	55	%	49%										
PROPOS <mark>E</mark> D Post-Project	87%	80	%	919	%									
MBSS Results														
	Metric #	Existing	Total	Proposed	Total									
B1	Benthic IBI (1-5)	3		4										
B2	Number of EPT Taxa (1-5)	3	11.0	4	16.0									
B3	Fish IBI (1-5)	3	11.0	3										
B4	Abundance / Sq.M. (1-5)	2		5										
Rapid Stream Assessment (RSA) Results														
	Metric #	Existing	Total	Proposed	Total									
R1	WQ	6		7										
R2	Shading	7		5										
R3	Riffle Cover	3		10										
R4	Pool Cover	3		10										
R5	Vel/Depth Diversity	4		8	-									
R6	Vertical Stability	6	54	10	100									

3

6

2

4

10

BHR

ER

FP Soil Drainage

BEHI

FP Exclusion

R7

R8

R9

R10

R11

35

10

10

10

10

10

Stream Mitigation Calculator (From MSMF Appendix A1, Tab 3)

				<u>S1</u>	<u>IREA</u>	M MIT	IGATI	<u>ON CAL</u>	CULAT	OR for	<u>Strea</u>	<u>m Ch</u>	<u>annels</u>			
BACKGR	ect ID #:	NFORM	<u>ATION</u>		Corps P	Corps PM:						TOTAL STREAM GAINS from Stream Channels (Functional Feet)				
Lat/Long:			Date: Sponsor: Collaborators:					469								
Raw Change in Reach Value (Functional Feet)										Adjustments Stream						
<u>Reach Name</u>	<u>Physiographic</u> <u>Region</u>	Evaluation	Activity	<u>Resource</u> <u>Type</u>	<u>Length</u> (Feet)	<u>Stream</u> Quality	<u>Channel</u> <u>Thread</u>	<u>Drainage Area</u> (sqmi)	<u>Raw Reach</u> <u>Value</u> (Functional <u>Feet)</u>	<u>Raw Change in</u> <u>Value</u> (Functional <u>Feet)</u>	<u>Change in</u> <u>Reach Length</u> <u>Adjustment</u>	<u>Site</u> Sensitivity	Site Protection		Gains (Functional Feet)	REMARKS (Incude reach coordinates)
	Piedmont	Existing	Preliminary Resource Evaluation	Perennial Headwater	1000		Primary	1.2	548		No Change		No Existing Protection	Easement		
Reach 1						51%	1	1.07		<u>387</u>	0		0.0	05	469	
	Piedmont	Proposed	Restoration/Enhancement	Perennial Headwater	1000	87%	Primary 1	1.2 1.07	934		0.5 <u>0</u>	<u>39</u>	<u>44</u>			Restoration of reach 1 at 36.85996, -76.77895

QUESTIONS

THE